Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 2909, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35614061

ABSTRACT

Ocean sediments consist mainly of calcium carbonate and organic matter (phytoplankton debris). Once subducted, some carbon is removed from the slab and returns to the atmosphere as CO2 in arc magmas. Its isotopic signature is thought to reflect the bulk fraction of inorganic (carbonate) and organic (graphitic) carbon in the sedimentary source. Here we challenge this assumption by experimentally investigating model sediments composed of 13C-CaCO3 + 12C-graphite interacting with water at pressure, temperature and redox conditions of an average slab-mantle interface beneath arcs. We show that oxidative dissolution of graphite is the main process controlling the production of CO2, and its isotopic composition reflects the CO2/CaCO3 rather than the bulk graphite/CaCO3 (i.e., organic/inorganic carbon) fraction. We provide a mathematical model to relate the arc CO2 isotopic signature with the fluid-rock ratios and the redox state in force in its subarc source.

2.
Nat Commun ; 11(1): 3880, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32759942

ABSTRACT

Geological sources of H2 and abiotic CH4 have had a critical role in the evolution of our planet and the development of life and sustainability of the deep subsurface biosphere. Yet the origins of these sources are largely unconstrained. Hydration of mantle rocks, or serpentinization, is widely recognized to produce H2 and favour the abiotic genesis of CH4 in shallow settings. However, deeper sources of H2 and abiotic CH4 are missing from current models, which mainly invoke more oxidized fluids at convergent margins. Here we combine data from exhumed subduction zone high-pressure rocks and thermodynamic modelling to show that deep serpentinization (40-80 km) generates significant amounts of H2 and abiotic CH4, as well as H2S and NH3. Our results suggest that subduction, worldwide, hosts large sources of deep H2 and abiotic CH4, potentially providing energy to the overlying subsurface biosphere in the forearc regions of convergent margins.


Subject(s)
Ecosystem , Hydrogen/chemistry , Methane/chemistry , Minerals/chemistry , Organic Chemicals/chemistry , Thermodynamics , Ammonia/chemistry , Chemical Phenomena , Geological Phenomena , Hydrogen Sulfide/chemistry , Mechanical Phenomena , Organic Chemistry Phenomena , Secologanin Tryptamine Alkaloids/chemistry , Volcanic Eruptions
SELECTION OF CITATIONS
SEARCH DETAIL
...