Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 480, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212306

ABSTRACT

Metamorphic fluids, faults, and shear zones are carriers of carbon from the deep Earth to shallower reservoirs. Some of these fluids are reduced and transport energy sources, like H2 and light hydrocarbons. Mechanisms and pathways capable of transporting these deep energy sources towards shallower reservoirs remain unidentified. Here we present geological evidence of failure of mechanically strong rocks due to the accumulation of CH4-H2-rich fluids at deep forearc depths, which ultimately reached supralithostatic pore fluid pressure. These fluids originated from adjacent reduction of carbonates by H2-rich fluids during serpentinization at eclogite-to-blueschist-facies conditions. Thermodynamic modeling predicts that the production and accumulation of CH4-H2-rich aqueous fluids can produce fluid overpressure more easily than carbon-poor and CO2-rich aqueous fluids. This study provides evidence for the migration of deep Earth energy sources along tectonic discontinuities, and suggests causal relationships with brittle failure of hard rock types that may trigger seismic activity at forearc depths.

2.
Geochem Geophys Geosyst ; 22(3): e2020GC009520, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33867865

ABSTRACT

Fluid release from subducting oceanic lithosphere is a key process for subduction zone geodynamics, from controlling arc volcanism to seismicity and tectonic exhumation. However, many fundamental details of fluid composition, flow pathways, and reactivity with slab-forming rocks remain to be thoroughly understood. In this study we investigate a multi-kilometer-long, high-pressure metasomatic system preserved in the lawsonite-eclogite metamorphic unit of Alpine Corsica, France. The fluid-mediated process was localized along a major intra-slab interface, which is the contact between basement and cover unit. Two distinct metasomatic stages are identified and discussed. We show that these two stages resulted from the infiltration of deep fluids that were derived from the same source and had the same slab-parallel, updip flow direction. By mass balance analysis, we quantify metasomatic mass changes along this fluid pathway and the time-integrated fluid fluxes responsible for them. In addition, we also assess carbon fluxes associated with these metasomatic events. The magnitude of the estimated fluid fluxes (104-105) indicates that major intra-slab interfaces such as lithological boundaries acted as fluid channels facilitating episodic pulses of fluid flow. We also show that when fluids are channelized, high time-integrated fluid fluxes lead to carbon fluxes several orders of magnitude higher than carbon fluxes generated by local dehydration reactions. Given the size and geologic features of the investigated metasomatic system, we propose that it represents the first reported natural analogue of the so-called high permeability channels predicted by numerical simulations.

3.
Sci Rep ; 10(1): 9848, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32555339

ABSTRACT

Fluid-rock interactions exert key control over rock rheology and strain localization. Redox may significantly affect the reaction pathways and, thereby, the mechanical properties of the rock. This effect may become critical in volatile-rich, redox sensitive rocks such as carbonate-rich lithologies, the breakdown of which can significantly modify the net volume change of fluid-mediated reactions. Subduction focus the largest recycling of crustal carbonates and the most intense seismic activity on Earth. Nevertheless, the feedbacks between deep carbon mobilization and deformation remain poorly investigated. We present quantitative microstructural results from natural samples and thermodynamic modeling indicating that percolation of reducing fluids exerts strong control on the mobilization of carbon and on strain localization in subducted carbonate rocks. Fluid-mediated carbonate reduction progressed from discrete domains unaffected by ductile deformation into localized shear zones deforming via diffusion creep, dissolution-precipitation creep and grain boundary sliding. Grain-size reduction and creep cavitation along localized shear zones enhanced fluid-carbonate interactions and fluid channelization. These results indicate that reduction of carbonate rocks can exert an important positive feedback on strain localization and fluid channelization, with potential implications on seismic activity and transport of deep hydrocarbon-bearing fluids.

4.
Nat Commun ; 8: 14134, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28223715

ABSTRACT

Alteration of ultramafic rocks plays a major role in the production of hydrocarbons and organic compounds via abiotic processes on Earth and beyond and contributes to the redistribution of C between solid and fluid reservoirs over geological cycles. Abiotic methanogenesis in ultramafic rocks is well documented at shallow conditions, whereas natural evidence at greater depths is scarce. Here we provide evidence for intense high-pressure abiotic methanogenesis by reduction of subducted ophicarbonates. Protracted (≥0.5-1 Ma), probably episodic infiltration of reduced fluids in the ophicarbonates and methanogenesis occurred from at least ∼40 km depth to ∼15-20 km depth. Textural, petrological and isotopic data indicate that methane reached saturation triggering the precipitation of graphitic C accompanied by dissolution of the precursor antigorite. Continuous infiltration of external reducing fluids caused additional methane production by interaction with the newly formed graphite. Alteration of high-pressure carbonate-bearing ultramafic rocks may represent an important source of abiotic methane, with strong implications for the mobility of deep C reservoirs.

SELECTION OF CITATIONS
SEARCH DETAIL
...