Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Data Brief ; 7: 582-90, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27054161

ABSTRACT

We present extensive all-atom Molecular Dynamics (MD) simulation data of the twenty encoded amino acids in explicit water, simulated with different force fields. The termini of the amino acids have been capped to ensure that the dynamics of the Φ and ψ torsion angles are analogues to the dynamics within a peptide chain. We use representatives of each of the four major force field families: AMBER ff-99SBILDN [1], AMBER ff-03 [2], OPLS-AA/L [3], CHARMM27 [4] and GROMOS43a1 [5], [6]. Our data represents a library and test bed for method development for MD simulations and for force fields development. Part of the data set has been previously used for comparison of the dynamic properties of force fields (Vitalini et al., 2015) [7] and for the construction of peptide basis functions for the variational approach to molecular kinetics [8].

2.
J Chem Theory Comput ; 11(9): 3992-4004, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26575895

ABSTRACT

Although Markov state models have proven to be powerful tools in resolving the complex features of biomolecular kinetics, the discretization of the conformational space has been a bottleneck since the advent of the method. A recently introduced variational approach, which uses basis functions instead of crisp conformational states, opened up a route to construct kinetic models in which the discretization error can be controlled systematically. Here, we develop and test a basis set for peptides to be used in the variational approach. The basis set is constructed by combining local residue-centered kinetic modes that are obtained from kinetic models of terminally blocked amino acids. Using this basis set, we model the conformational kinetics of two hexapeptides with sequences VGLAPG and VGVAPG. Six basis functions are sufficient to represent the slow kinetic modes of these peptides. The basis set also allows for a direct interpretation of the slow kinetic modes without an additional clustering in the space of the dominant eigenvectors. Moreover, changes in the conformational kinetics due to the exchange of leucine in VGLAPG to valine in VGVAPG can be directly quantified by comparing histograms of the basis set expansion coefficients.


Subject(s)
Oligopeptides/chemistry , Amino Acids/chemistry , Kinetics , Models, Molecular , Protein Conformation
3.
J Chem Phys ; 142(8): 084101, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-25725706

ABSTRACT

Molecular-dynamics simulations are increasingly used to study dynamic properties of biological systems. With this development, the ability of force fields to successfully predict relaxation timescales and the associated conformational exchange processes moves into focus. We assess to what extent the dynamic properties of model peptides (Ac-A-NHMe, Ac-V-NHMe, AVAVA, A10) differ when simulated with different force fields (AMBER ff99SB-ILDN, AMBER ff03, OPLS-AA/L, CHARMM27, and GROMOS43a1). The dynamic properties are extracted using Markov state models. For single-residue models (Ac-A-NHMe, Ac-V-NHMe), the slow conformational exchange processes are similar in all force fields, but the associated relaxation timescales differ by up to an order of magnitude. For the peptide systems, not only the relaxation timescales, but also the conformational exchange processes differ considerably across force fields. This finding calls the significance of dynamic interpretations of molecular-dynamics simulations into question.

SELECTION OF CITATIONS
SEARCH DETAIL
...