Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Clin Invest ; 134(8)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376918

ABSTRACT

BACKGROUNDPersistent controllers (PCs) maintain antiretroviral-free HIV-1 control indefinitely over time, while transient controllers (TCs) eventually lose virological control. It is essential to characterize the quality of the HIV reservoir in terms of these phenotypes in order to identify the factors that lead to HIV progression and to open new avenues toward an HIV cure.METHODSThe characterization of HIV-1 reservoir from peripheral blood mononuclear cells was performed using next-generation sequencing techniques, such as full-length individual and matched integration site proviral sequencing (FLIP-Seq; MIP-Seq).RESULTSPCs and TCs, before losing virological control, presented significantly lower total, intact, and defective proviruses compared with those of participants on antiretroviral therapy (ART). No differences were found in total and defective proviruses between PCs and TCs. However, intact provirus levels were lower in PCs compared with TCs; indeed the intact/defective HIV-DNA ratio was significantly higher in TCs. Clonally expanded intact proviruses were found only in PCs and located in centromeric satellite DNA or zinc-finger genes, both associated with heterochromatin features. In contrast, sampled intact proviruses were located in permissive genic euchromatic positions in TCs.CONCLUSIONSThese results suggest the need for, and can give guidance to, the design of future research to identify a distinct proviral landscape that may be associated with the persistent control of HIV-1 without ART.FUNDINGInstituto de Salud Carlos III (FI17/00186, FI19/00083, MV20/00057, PI18/01532, PI19/01127 and PI22/01796), Gilead Fellowships (GLD22/00147). NIH grants AI155171, AI116228, AI078799, HL134539, DA047034, MH134823, amfAR ARCHE and the Bill and Melinda Gates Foundation.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV-1/genetics , Leukocytes, Mononuclear , Proviruses/genetics , HIV Infections/drug therapy , Anti-Retroviral Agents/therapeutic use
2.
Int J Mol Sci ; 24(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37762055

ABSTRACT

CD300a is differentially expressed among B cell subsets, although its expression in immunoglobulin (Ig)M+ B cells is not well known. We identified a B cell subset expressing CD300a and high levels of IgM (IgMhiCD300a+). The results showed that IgMhiCD300a+ B cells were CD10-CD27+CD25+IgDloCD21hiCD23-CD38loCD1chi, suggesting that they are circulating marginal zone (MZ) IgM memory B cells. Regarding the immunoglobulin repertoire, IgMhiCD300a+ B cells exhibited a higher mutation rate and usage of the IgH-VDJ genes than the IgM+CD300a- counterpart. Moreover, the shorter complementarity-determining region 3 (CDR3) amino acid (AA) length from IgMhiCD300a+ B cells together with the predicted antigen experience repertoire indicates that this B cell subset has a memory phenotype. IgM memory B cells are important in T cell-independent responses. Accordingly, we demonstrate that this particular subset secretes higher amounts of IgM after stimulation with pneumococcal polysaccharides or a toll-like receptor 9 (TLR9) agonist than IgM+CD300a- cells. Finally, the frequency of IgMhiCD300a+ B cells was lower in people living with HIV-1 (PLWH) and it was inversely correlated with the years with HIV infection. Altogether, these data help to identify a memory B cell subset that contributes to T cell-independent responses to pneumococcal infections and may explain the increase in severe pneumococcal infections and the impaired responses to pneumococcal vaccination in PLWH.


Subject(s)
HIV Infections , Pneumococcal Infections , Humans , Memory B Cells , Streptococcus pneumoniae , Adjuvants, Immunologic , Complementarity Determining Regions , Immunoglobulin M
3.
iScience ; 26(7): 107214, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37456859

ABSTRACT

Some HIV controllers experience immunologic progression with CD4+ T cell decline. We aimed to identify genetic factors associated with CD4+ T cell lost in HIV controllers. A total of 561 HIV controllers were included, 442 and 119 from the International HIV controllers Study Cohort and the Swiss HIV Cohort Study, respectively. No SNP or gene was associated with the long-term non-progressor HIV spontaneous control phenotype in the individual GWAS or in the meta-analysis. However, SNPs previously associated with natural HIV control linked to HLA-B (rs2395029 [p = 0.005; OR = 1.70], rs59440261 [p = 0.003; OR = 1.78]), MICA (rs112243036 [p = 0.011; OR = 1.45]), and PSORS1C1 loci (rs3815087 [p = 0.017; OR = 1.39]) showed nominal association with this phenotype. Genetic factors associated with the long-term HIV controllers without risk of immunologic progression are those previously related to the overall HIV controller phenotype.

4.
EBioMedicine ; 91: 104549, 2023 May.
Article in English | MEDLINE | ID: mdl-37018973

ABSTRACT

BACKGROUND: Plasmacytoid dendritic cells (pDCs) sense viral and bacterial products through Toll-like receptor (TLR)-7 and -9 and translate this sensing into Interferon-α (IFN-α) production and T-cell activation. The understanding of the mechanisms involved in pDCs stimulation may contribute to HIV-cure immunotherapeutic strategies. The objective of the present study was to characterize the immunomodulatory effects of TLR agonist stimulations in several HIV-1 disease progression phenotypes and in non HIV-1 infected donors. METHODS: pDCs, CD4 and CD8 T-cells were isolated from 450 ml of whole blood from non HIV-1 infected donors, immune responders (IR), immune non responders (INR), viremic (VIR) and elite controller (EC) participants. pDCs were stimulated overnight with AT-2, CpG-A, CpG-C and GS-9620 or no stimuli. After that, pDCs were co-cultured with autologous CD4 or CD8 T-cells and with/without HIV-1 (Gag peptide pool) or SEB (Staphylococcal Enterotoxin B). Cytokine array, gene expression and deep immunophenotyping were assayed. FINDINGS: pDCs showed an increase of activation markers levels, interferon related genes, HIV-1 restriction factors and cytokines levels after TLR stimulation in the different HIV-disease progression phenotypes. This pDC activation was prominent with CpG-C and GS-9620 and induced an increase of HIV-specific T-cell response even in VIR and INR comparable with EC. This HIV-1 specific T-cell response was associated with the upregulation of HIV-1 restriction factors and IFN-α production by pDC. INTERPRETATION: These results shed light on the mechanisms associated with TLR-specific pDCs stimulation associated with the induction of a T-cell mediated antiviral response which is essential for HIV-1 eradication strategies. FUNDING: This work was supported by Gilead fellowship program, the Instituto de Salud Carlos III (Fondo Europeo de Desarrollo Regional, FEDER, "a way to make Europe") and the Red Temática de Investigación Cooperativa en SIDA and by the Spanish National Research Council (CSIC).


Subject(s)
Dendritic Cells , Toll-Like Receptor 9 , Toll-Like Receptor 9/metabolism , Cytokines/metabolism , Adjuvants, Immunologic , Phenotype
5.
JCI Insight ; 7(17)2022 09 08.
Article in English | MEDLINE | ID: mdl-35943812

ABSTRACT

The immune factors associated with impaired SARS-CoV-2 vaccine response in elderly people are mostly unknown. We studied individuals older than 60 and younger than 60 years, who had been vaccinated with SARS-CoV-2 BNT162b2 mRNA, before and after the first and second dose. Aging was associated with a lower anti-RBD IgG levels and a decreased magnitude and polyfunctionality of SARS-CoV-2-specific T cell response. The dramatic decrease in thymic function in people > 60 years, which fueled alteration in T cell homeostasis, and their lower CD161+ T cell levels were associated with decreased T cell response 2 months after vaccination. Additionally, deficient DC homing, activation, and TLR-mediated function, along with a proinflammatory functional profile in monocytes, were observed in the > 60-year-old group, which was also related to lower specific T cell response after vaccination. These findings might be relevant for the improvement of the current vaccination strategies and for the development of new vaccine prototypes.


Subject(s)
COVID-19 , Viral Vaccines , Aged , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Middle Aged , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
6.
PLoS One ; 17(7): e0269875, 2022.
Article in English | MEDLINE | ID: mdl-35834501

ABSTRACT

BACKGROUND: The SARS-CoV-2 pandemic has overwhelmed hospital services due to the rapid transmission of the virus and its severity in a high percentage of cases. Having tools to predict which patients can be safely early discharged would help to improve this situation. METHODS: Patients confirmed as SARS-CoV-2 infection from four Spanish hospitals. Clinical, demographic, laboratory data and plasma samples were collected at admission. The patients were classified into mild and severe/critical groups according to 4-point ordinal categories based on oxygen therapy requirements. Logistic regression models were performed in mild patients with only clinical and routine laboratory parameters and adding plasma pro-inflammatory cytokine levels to predict both early discharge and worsening. RESULTS: 333 patients were included. At admission, 307 patients were classified as mild patients. Age, oxygen saturation, Lactate Dehydrogenase, D-dimers, neutrophil-lymphocyte ratio (NLR), and oral corticosteroids treatment were predictors of early discharge (area under curve (AUC), 0.786; sensitivity (SE) 68.5%; specificity (S), 74.5%; positive predictive value (PPV), 74.4%; and negative predictive value (NPV), 68.9%). When cytokines were included, lower interferon-γ-inducible protein 10 and higher Interleukin 1 beta levels were associated with early discharge (AUC, 0.819; SE, 91.7%; S, 56.6%; PPV, 69.3%; and NPV, 86.5%). The model to predict worsening included male sex, oxygen saturation, no corticosteroids treatment, C-reactive protein and Nod-like receptor as independent factors (AUC, 0.903; SE, 97.1%; S, 68.8%; PPV, 30.4%; and NPV, 99.4%). The model was slightly improved by including the determinations of interleukine-8, Macrophage inflammatory protein-1 beta and soluble IL-2Rα (CD25) (AUC, 0.952; SE, 97.1%; S, 98.1%; PPV, 82.7%; and NPV, 99.6%). CONCLUSIONS: Clinical and routine laboratory data at admission strongly predict non-worsening during the first two weeks; therefore, these variables could help identify those patients who do not need a long hospitalization and improve hospital overcrowding. Determination of pro-inflammatory cytokines moderately improves these predictive capacities.


Subject(s)
COVID-19 , SARS-CoV-2 , Biomarkers , Cytokines , Humans , Male , Patient Discharge
7.
Clin Transl Med ; 12(4): e802, 2022 04.
Article in English | MEDLINE | ID: mdl-35415890

ABSTRACT

SARS-CoV-2 specific T-cell response has been associated with disease severity, immune memory and heterologous response to endemic coronaviruses. However, an integrative approach combining a comprehensive analysis of the quality of SARS-CoV-2 specific T-cell response with antibody levels in these three scenarios is needed. In the present study, we found that, in acute infection, while mild disease was associated with high T-cell polyfunctionality biased to IL-2 production and inversely correlated with anti-S IgG levels, combinations only including IFN-γ with the absence of perforin production predominated in severe disease. Seven months after infection, both non-hospitalised and previously hospitalised patients presented robust anti-S IgG levels and SARS-CoV-2 specific T-cell response. In addition, only previously hospitalised patients showed a T-cell exhaustion profile. Finally, combinations including IL-2 in response to S protein of endemic coronaviruses were the ones associated with SARS-CoV-2 S-specific T-cell response in pre-COVID-19 healthy donors' samples. These results could have implications for protective immunity against SARS-CoV-2 and recurrent COVID-19 and may help for the design of new prototypes and boosting vaccine strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunoglobulin G , Immunologic Memory , Interleukin-2 , Severity of Illness Index , T-Lymphocytes
8.
Microorganisms ; 10(1)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35056592

ABSTRACT

Intra-host evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been reported in cases with persistent coronavirus disease 2019 (COVID-19). In this study, we describe a severely immunosuppressed individual with HIV-1/SARS-CoV-2 coinfection with a long-term course of SARS-CoV-2 infection. A 28-year-old man was diagnosed with HIV-1 infection (CD4+ count: 3 cells/µL nd 563000 HIV-1 RNA copies/mL) and simultaneous Pneumocystis jirovecii pneumonia, disseminated Mycobacterium avium complex infection and SARS-CoV-2 infection. SARS-CoV-2 real-time reverse transcription polymerase chain reaction positivity from nasopharyngeal samples was prolonged for 15 weeks. SARS-CoV-2 was identified as variant Alpha (PANGO lineage B.1.1.7) with mutation S:E484K. Spike-specific T-cell response was similar to HIV-negative controls although enriched in IL-2, and showed disproportionately increased immunological exhaustion marker levels. Despite persistent SARS-CoV-2 infection, adaptive intra-host SARS-CoV-2 evolution, was not identified. Spike-specific T-cell response protected against a severe COVID-19 outcome and the increased immunological exhaustion marker levels might have favoured SARS-CoV-2 persistence.

9.
Cell Mol Immunol ; 18(9): 2128-2139, 2021 09.
Article in English | MEDLINE | ID: mdl-34290398

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 infection induces an exacerbated inflammation driven by innate immunity components. Dendritic cells (DCs) play a key role in the defense against viral infections, for instance plasmacytoid DCs (pDCs), have the capacity to produce vast amounts of interferon-alpha (IFN-α). In COVID-19 there is a deficit in DC numbers and IFN-α production, which has been associated with disease severity. In this work, we described that in addition to the DC deficiency, several DC activation and homing markers were altered in acute COVID-19 patients, which were associated with multiple inflammatory markers. Remarkably, previously hospitalized and nonhospitalized patients remained with decreased numbers of CD1c+ myeloid DCs and pDCs seven months after SARS-CoV-2 infection. Moreover, the expression of DC markers such as CD86 and CD4 were only restored in previously nonhospitalized patients, while no restoration of integrin ß7 and indoleamine 2,3-dyoxigenase (IDO) levels were observed. These findings contribute to a better understanding of the immunological sequelae of COVID-19.


Subject(s)
COVID-19/immunology , Dendritic Cells/immunology , SARS-CoV-2/immunology , Cells, Cultured , Female , Humans , Immunity, Innate/immunology , Inflammation/immunology , Interferon-alpha/immunology , Leukocytes, Mononuclear/immunology , Male , Severity of Illness Index
10.
Sci Rep ; 11(1): 6472, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33742092

ABSTRACT

Natural Killer (NK) cells acquire memory-like properties following a brief stimulation with IL-12, IL-15 and IL-18. These IL-12/15/18-preactivated NK cells, also known as cytokine-induced memory-like (CIML) NK cells, have been revealed as a powerful tool in cancer immunotherapy due to their persistence in the host and their increased effector functions. Several studies have shown that NK cells modulate their metabolism in response to cytokine-stimulation and other stimuli, suggesting that there is a link between metabolism and cellular functions. In this paper, we have analyzed metabolic changes associated to IL-12/15/18-stimulation and the relevance of glycolytic pathway for NK cell effector functions. We have found CIML NK cells are able to retain a metabolic profile shifted towards glycolysis seven days after cytokine withdrawal. Furthermore, we found that treatment with 2-DG differently affects distinct NK cell effector functions and is stimuli-dependent. These findings may have implications in the design of NK cell-based cancer immunotherapies.


Subject(s)
Glycolysis , Interleukins/pharmacology , Killer Cells, Natural/metabolism , Cells, Cultured , Humans , K562 Cells , Killer Cells, Natural/drug effects , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Metabolome
11.
STAR Protoc ; 1(3): 100149, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33377043

ABSTRACT

Although scarce in the peripheral blood of healthy people, CD56neg NK cells are known to be expanded in some pathological conditions. However, studies on CD56neg NK cells had revealed contradictions, probably due to the lack of a specific NK cell surface marker that helps to identify this subset. This protocol details the step-by-step procedure for the identification and functional analysis of CD56neg NK cells, providing an improved gating strategy for the selection of this intriguing population. For complete details on the use and execution of this protocol, please refer to Orrantia et al. (2020).


Subject(s)
CD56 Antigen/metabolism , Flow Cytometry/methods , Killer Cells, Natural/cytology , Biological Assay , Humans , K562 Cells , Staining and Labeling
12.
Semin Hematol ; 57(4): 213-224, 2020 10.
Article in English | MEDLINE | ID: mdl-33256914

ABSTRACT

Natural killer (NK) cells are lymphocytes with potent antitumor functions and, therefore, multiple NK cell-based cancer immunotherapies have been developed and are currently being tested. However, there is a necessity to find new means to improve these therapies, and immunometabolism represents an attractive target. NK cell effector functions are intricately linked to their metabolism, and modulating the latter could be the key to release their full potential. In this review, we have summarized how NK cell metabolism is regulated during some processes, such as maturation, viral infection, and cytokine stimulation. Additionally, we provide an overview of how NK cell metabolism is affected by current therapeutic approaches aimed to promote NK cell expansion and/or to increase their effector functions. We have also recapitulated several strategies that could help alleviating the metabolic impairment that characterizes tumor-infiltrating NK cells, and thus increase or restore their effector functions. Furthermore, we have reviewed several therapeutic approaches targeting cancer metabolism that could synergize with NK cell-based cancer immunotherapies, and thus enhance their efficacy.


Subject(s)
Immunotherapy/methods , Killer Cells, Natural/metabolism , Neoplasms/therapy , Humans , Neoplasms/immunology
13.
iScience ; 23(7): 101298, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32622268

ABSTRACT

Natural killer (NK) cells are usually identified by the absence of other lineage markers, due to the lack of cell-surface-specific receptors. CD56neg NK cells, classically identified as CD56negCD16+, are very scarce in the peripheral blood of healthy people but they expand in some pathological conditions. However, studies on CD56neg NK cells had revealed different results regarding the phenotype and functionality. This could be due to, among others, the unstable expression of CD16, which hinders CD56neg NK cells' proper identification. Hence, we aim to determine an alternative surface marker to CD16 to better identify CD56neg NK cells. We have found that NKp80 is superior to CD16. Furthermore, we found differences between the functionality of CD56negNKp80+ and CD56negCD16+, suggesting that the effector functions of CD56neg NK cells are not as diminished as previously thought. We proposed NKp80 as a noteworthy marker to identify and accurately re-characterize human CD56neg NK cells.

14.
Int J Mol Sci ; 21(9)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365988

ABSTRACT

Allergy is the host immune response against non-infectious substances called allergens. The prevalence of allergic diseases is increasing worldwide. However, while some drugs counteract the symptomatology caused by allergic reactions, no completely effective treatments for allergic diseases have been developed yet. In this sense, the ability of surface activating and inhibitory receptors to modulate the function of the main effector cells of allergic responses makes these molecules potential pharmacological targets. The CD300 receptor family consists of members with activating and inhibitory capabilities mainly expressed on the surface of immune cells. Multiple studies in the last few years have highlighted the importance of CD300 molecules in several pathological conditions. This review summarizes the literature on CD300 receptor expression, regulation and function in mast cells, basophils and eosinophils, the main players of allergic responses. Moreover, we review the involvement of CD300 receptors in the pathogenesis of certain allergic diseases, as well as their prospective use as therapeutic targets for the treatment of IgE-dependent allergic responses.


Subject(s)
Hypersensitivity/metabolism , Mast Cells/metabolism , Animals , Basophils/immunology , Basophils/metabolism , Eosinophils/immunology , Eosinophils/metabolism , Humans , Hypersensitivity/immunology , Immunoglobulin E/metabolism , Mast Cells/immunology
15.
AIDS ; 34(8): 1249-1252, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32287074

ABSTRACT

: Human CD300a is known to promote the infection by dengue and other enveloped viruses and is overexpressed on CD4 T cells from HIV-1-infected patients. We found that infected CD4+RA- T cells from untreated HIV-1-infected patients were mostly CD300a+. Furthermore, CD300a expressing CD4+RA- T cells from healthy donors were significantly more infected by HIV-1 in vitro than CD300a- cells. CD300a might represent a biomarker of susceptibility to HIV-1 infection on memory CD4 T lymphocytes.


Subject(s)
Antigens, CD/metabolism , CD4-Positive T-Lymphocytes/immunology , HIV Infections/diagnosis , HIV-1 , Receptors, Immunologic/metabolism , CD4-Positive T-Lymphocytes/metabolism , HIV Infections/immunology , Humans , Immunologic Memory , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology
16.
Sci Rep ; 10(1): 6070, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32269232

ABSTRACT

CD300a receptor is found on different CD8+ T cell subsets and its expression has been associated to a more cytotoxic molecular signature. CD300a has an important role in some viral infections and its expression levels are known to be modulated by human immunodeficiency virus (HIV)-1 infection on several cell types. The main objective of this work was to investigate CD300a expression and its regulation during HIV-1 specific CD8+ T cell responses. CD300a receptor expression was analysed by multiparametric flow cytometry on CD8+ T lymphocytes from HIV negative donors, naive HIV-1+ individuals and HIV-1+ subjects under suppressive combined antiretroviral therapy (cART). HIV-1 specific CD8+ T cell response was studied by stimulating cells with HIV-1 derived peptides or with a Gag HIV-1 peptide. Our results showed that HIV-1 specific CD8+ T cells expressing higher levels of CD300a were more polyfunctional showing an increased degranulation and cytokine production. Moreover, we observed an up-regulation of CD300a expression after Gag HIV-1 peptide stimulation. Finally, our results demonstrated an inverse correlation between CD300a expression on CD8+ T lymphocytes and HIV disease progression markers. In conclusion, CD300a expression is associated to a better and more polyfunctional HIV-1 specific CD8+ T cell response.


Subject(s)
Antigens, CD/genetics , CD8-Positive T-Lymphocytes/immunology , HIV Infections/immunology , Receptors, Immunologic/genetics , Anti-HIV Agents/therapeutic use , Antigens, CD/metabolism , CD8-Positive T-Lymphocytes/virology , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , HIV Infections/blood , HIV Infections/drug therapy , HIV-1/immunology , HIV-1/pathogenicity , Humans , Receptors, Immunologic/metabolism
17.
Cancers (Basel) ; 12(2)2020 Jan 29.
Article in English | MEDLINE | ID: mdl-32013092

ABSTRACT

Natural killer (NK) cells are cytotoxic lymphocytes that are able to kill tumor cells without prior sensitization. It has been shown that NK cells play a pivotal role in a variety of cancers, highlighting their relevance in tumor immunosurveillance. NK cell infiltration has been reported in renal cell carcinoma (RCC), the most frequent kidney cancer in adults, and their presence has been associated with patients' survival. However, the role of NK cells in this disease is not yet fully understood. In this review, we summarize the biology of NK cells and the mechanisms through which they are able to recognize and kill tumor cells. Furthermore, we discuss the role that NK cells play in renal cell carcinoma, and review current strategies that are being used to boost and exploit their cytotoxic capabilities.

18.
Methods Enzymol ; 631: 239-255, 2020.
Article in English | MEDLINE | ID: mdl-31948550

ABSTRACT

Lymphocytes proliferate in response to several stimuli. In many situations, a rapid lymphocyte expansion, or the identification of a slow dividing cell subpopulation may be of great interest. Thus, it is necessary to perform reliable assays to study and compare lymphocyte subsets proliferation. For this purpose, carboxifluorescein diacetate succinimidyl ester (CFSE) dilution assay has been stablished as a very useful tool that provides cumulative information about cell proliferation. Unlike other techniques that measure a static parameter of a specific time-point, CFSE staining allows to distinguish between subsequent cell divisions. Here, we show a simple protocol to study human T and NK cell proliferation with CFSE dilution assay by flow cytometry.


Subject(s)
Cell Proliferation , Flow Cytometry/methods , Killer Cells, Natural/physiology , T-Lymphocytes/physiology , Fluoresceins , Humans , Succinimides
19.
Front Immunol ; 10: 2278, 2019.
Article in English | MEDLINE | ID: mdl-31616440

ABSTRACT

Natural Killer (NK) cells are characterized by their potential to kill tumor cells by different means without previous sensitization and have, therefore, become a valuable tool in cancer immunotherapy. However, their efficacy against solid tumors is still poor and further studies are required to improve it. One of the major restrictions for NK cell activity is the immunosuppressive tumor microenvironment (TME). There, tumor and other immune cells create the appropriate conditions for tumor proliferation while, among others, preventing NK cell activation. Furthermore, NK cell metabolism is impaired in the TME, presumably due to nutrient and oxygen deprivation, and the higher concentration of tumor-derived metabolic end products, such as lactate. This metabolic restriction of NK cells limits their effector functions, and it could represent a potential target to focus on to improve the efficacy of NK cell-based therapies against solid tumors. In this review, we discuss the potential effect of TME into NK cell metabolism and its influence in NK cell effector functions.


Subject(s)
Immunotherapy/methods , Killer Cells, Natural/immunology , Neoplasms/immunology , Neoplasms/therapy , Tumor Microenvironment/immunology , Animals , Cell Proliferation , Humans , Immune Tolerance/immunology , Killer Cells, Natural/metabolism , Lymphocyte Activation/immunology , Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...