Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nature ; 625(7995): 483-488, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38233620

ABSTRACT

Heavy-fermion metals are prototype systems for observing emergent quantum phases driven by electronic interactions1-6. A long-standing aspiration is the dimensional reduction of these materials to exert control over their quantum phases7-11, which remains a significant challenge because traditional intermetallic heavy-fermion compounds have three-dimensional atomic and electronic structures. Here we report comprehensive thermodynamic and spectroscopic evidence of an antiferromagnetically ordered heavy-fermion ground state in CeSiI, an intermetallic comprising two-dimensional (2D) metallic sheets held together by weak interlayer van der Waals (vdW) interactions. Owing to its vdW nature, CeSiI has a quasi-2D electronic structure, and we can control its physical dimension through exfoliation. The emergence of coherent hybridization of f and conduction electrons at low temperature is supported by the temperature evolution of angle-resolved photoemission and scanning tunnelling spectra near the Fermi level and by heat capacity measurements. Electrical transport measurements on few-layer flakes reveal heavy-fermion behaviour and magnetic order down to the ultra-thin regime. Our work establishes CeSiI and related materials as a unique platform for studying dimensionally confined heavy fermions in bulk crystals and employing 2D device fabrication techniques and vdW heterostructures12 to manipulate the interplay between Kondo screening, magnetic order and proximity effects.

2.
Nano Lett ; 23(11): 5070-5075, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37195262

ABSTRACT

We investigate heterostructures composed of monolayer WSe2 stacked on α-RuCl3 using a combination of Terahertz (THz) and infrared (IR) nanospectroscopy and imaging, scanning tunneling spectroscopy (STS), and photoluminescence (PL). Our observations reveal itinerant carriers in the heterostructure prompted by charge transfer across the WSe2/α-RuCl3 interface. Local STS measurements show the Fermi level is shifted to the valence band edge of WSe2 which is consistent with p-type doping and verified by density functional theory (DFT) calculations. We observe prominent resonances in near-IR nano-optical and PL spectra, which are associated with the A-exciton of WSe2. We identify a concomitant, near total, quenching of the A-exciton resonance in the WSe2/α-RuCl3 heterostructure. Our nano-optical measurements show that the charge-transfer doping vanishes while excitonic resonances exhibit near-total recovery in "nanobubbles", where WSe2 and α-RuCl3 are separated by nanometer distances. Our broadband nanoinfrared inquiry elucidates local electrodynamics of excitons and an electron-hole plasma in the WSe2/α-RuCl3 system.

3.
Nano Lett ; 22(14): 5689-5697, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35839312

ABSTRACT

Ca2RuO4 is a transition-metal oxide that exhibits a Mott insulator-metal transition (IMT) concurrent with a symmetry-preserving Jahn-Teller distortion (JT) at 350 K. The coincidence of these two transitions demonstrates a high level of coupling between the electronic and structural degrees of freedom in Ca2RuO4. Using spectroscopic measurements with nanoscale spatial resolution, we interrogate the interplay of the JT and IMT through the temperature-driven transition. Then, we introduce photoexcitation with subpicosecond temporal resolution to explore the coupling of the JT and IMT via electron-hole injection under ambient conditions. Through the temperature-driven IMT, we observe phase coexistence in the form of a stripe phase existing at the domain wall between macroscopic insulating and metallic domains. Through ultrafast carrier injection, we observe the formation of midgap states via enhanced optical absorption. We propose that these midgap states become trapped by lattice polarons originating from the local perturbation of the JT.

4.
Nat Commun ; 12(1): 5594, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34552072

ABSTRACT

Tungsten ditelluride (WTe2) is an atomically layered transition metal dichalcogenide whose physical properties change systematically from monolayer to bilayer and few-layer versions. In this report, we use apertureless scattering-type near-field optical microscopy operating at Terahertz (THz) frequencies and cryogenic temperatures to study the distinct THz range electromagnetic responses of mono-, bi- and trilayer WTe2 in the same multi-terraced micro-crystal. THz nano-images of monolayer terraces uncovered weakly insulating behavior that is consistent with transport measurements. The near-field signal on bilayer regions shows moderate metallicity with negligible temperature dependence. Subdiffractional THz imaging data together with theoretical calculations involving thermally activated carriers favor the semimetal scenario with [Formula: see text] over the semiconductor scenario for bilayer WTe2. Also, we observed clear metallic behavior of the near-field signal on trilayer regions. Our data are consistent with the existence of surface plasmon polaritons in the THz range confined to trilayer terraces in our specimens. Finally, data for microcrystals up to 12 layers thick reveal how the response of a few-layer WTe2 asymptotically approaches the bulk limit.

5.
Opt Lett ; 46(15): 3572-3575, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34329227

ABSTRACT

By sampling terahertz waveforms emitted from InAs surfaces, we reveal how the entire, realistic geometry of typical near-field probes drastically impacts the broadband electromagnetic fields. In the time domain, these modifications manifest as a shift in the carrier-envelope phase and emergence of a replica pulse with a time delay dictated by the length of the cantilever. This interpretation is fully corroborated by quantitative simulations of terahertz emission nanoscopy based on the finite element method. Our approach provides a solid theoretical framework for quantitative nanospectroscopy and sets the stage for a reliable description of subcycle, near-field microscopy at terahertz frequencies.

6.
Nano Lett ; 21(13): 5767-5773, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34142555

ABSTRACT

Natural hyperbolic materials with dielectric permittivities of opposite signs along different principal axes can confine long-wavelength electromagnetic waves down to the nanoscale, well below the diffraction limit. Confined electromagnetic waves coupled to phonons in hyperbolic dielectrics including hexagonal boron nitride (hBN) and α-MoO3 are referred to as hyperbolic phonon polaritons (HPPs). HPP dissipation at ambient conditions is substantial, and its fundamental limits remain unexplored. Here, we exploit cryogenic nanoinfrared imaging to investigate propagating HPPs in isotopically pure hBN and naturally abundant α-MoO3 crystals. Close to liquid-nitrogen temperatures, losses for HPPs in isotopic hBN drop significantly, resulting in propagation lengths in excess of 8 µm, with lifetimes exceeding 5 ps, thereby surpassing prior reports on such highly confined polaritonic modes. Our nanoscale, temperature-dependent imaging reveals the relevance of acoustic phonons in HPP damping and will be instrumental in mitigating such losses for miniaturized mid-infrared technologies operating at liquid-nitrogen temperatures.

7.
Pharm Pat Anal ; 6(2): 61-76, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28248151

ABSTRACT

P2X7, a ligand-gated purinergic ion channel, has been at the center of intense efforts in the pharmaceutical industry in the last 15 years due to the growing appreciation of its role in inflammation. Since 2008-2009, increased focus on CNS available compounds has led to the publication of various patents on behalf of several pharmaceutical companies. This patent review aims at analyzing the recent patent literature (2008-2016) with a particular emphasis on those patents that are thought to deal with CNS penetrant compounds on the basis of their physicochemical features, the assays described in the patents and the uses these compounds are claimed for.


Subject(s)
Central Nervous System Diseases/drug therapy , Patents as Topic , Purinergic P2X Receptor Antagonists/therapeutic use , Animals , Cell Line , Central Nervous System Diseases/metabolism , Clinical Trials as Topic , Disease Models, Animal , Humans , Molecular Structure , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Purinergic P2X Receptor Antagonists/administration & dosage , Purinergic P2X Receptor Antagonists/chemistry , Receptors, Purinergic P2X/metabolism
8.
J Nat Prod ; 79(4): 1144-8, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27064611

ABSTRACT

A new phosphorylated polyketide, phosphoeleganin (1), has been isolated from the Mediterranean ascidian Sidnyum elegans. Its structure and configuration have been determined by extensive use of 2D NMR and microscale chemical degradation and/or derivatization. Phosphoeleganin (1) inhibited the protein tyrosine phosphatase 1B (PTP1B) activity.


Subject(s)
Polyketides/isolation & purification , Polyketides/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Urochordata/chemistry , Animals , Mediterranean Region , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Polyketides/chemistry
9.
Mar Drugs ; 10(11): 2509-18, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-23203274

ABSTRACT

An exhaustive exploration into the metabolic content of the Mediterranean sponge Axinella-polypoides resulted in the isolation of the new betaine 5 and the new cyclonucleoside 8. The structures of the new metabolites were elucidated by spectroscopic methods assisted by computational methods. The analysis also provided evidence that the sponge does not elaborate pyrrole-imidazole alkaloids (PIAs) but, interestingly, it was shown to contain two already known cyclodipeptides, compounds 9 (verpacamide A) and 10.


Subject(s)
Axinella/chemistry , Betaine/chemistry , Nucleosides/chemistry , Peptides, Cyclic/chemistry , Animals , Betaine/isolation & purification , Mediterranean Sea , Nucleosides/isolation & purification , Peptides, Cyclic/isolation & purification , Spectrum Analysis
10.
Molecules ; 17(11): 12642-50, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-23103530

ABSTRACT

Chemical investigation of two species of marine ascidians, Aplidium elegans and Ciona edwardsii, collected in Mediterranean area, led to isolation of a series of alkyl sulfates (compounds 1-5) including three new molecules 1-3. Structures of the new metabolites have been elucidated by spectroscopic analysis. Based on previously reported cytotoxic activity of these type of molecules, compounds 1-3 have been tested for their effects on the growth of two cell lines, J774A.1 (BALB/c murine macrophages) and C6 (rat glioma) in vitro. Compounds 1 and 2 induced selective concentration-dependent mortality on J774A.1 cells.


Subject(s)
Cell Survival/drug effects , Sulfuric Acid Esters/chemistry , Urochordata/chemistry , Animals , Cell Line , Macrophages/drug effects , Macrophages/physiology , Magnetic Resonance Spectroscopy , Mediterranean Sea , Mice , Mice, Inbred BALB C , Molecular Structure , Rats , Sulfuric Acid Esters/isolation & purification , Sulfuric Acid Esters/pharmacology
11.
Mar Drugs ; 10(1): 51-63, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22363220

ABSTRACT

Two new sulfoxide-containing metabolites, aplisulfamines A and B, have been isolated from an Aplidium sp. collected in the Bay of Naples. Their planar structure and geometry of a double bond were readily determined by using standard methods, mainly NMR spectroscopy. An original approach was used to assign the absolute configuration at the three contiguous chiral centers present in the structures of both aplisulfamines, two at carbon and one at sulfur. This involved Electronic Circular Dichroism (ECD) studies, J-based configuration analysis and Density Functional Theory (DFT) calculations and represents an interesting integration of modern techniques in stereoanalysis, which could contribute to the enhancement of theoretical protocols recently applied to solve stereochemical aspects in structure elucidation.


Subject(s)
Sulfoxides/chemistry , Urochordata/metabolism , Animals , Carbon/chemistry , Circular Dichroism , Molecular Conformation , Nuclear Magnetic Resonance, Biomolecular , Sulfur/chemistry
12.
Mar Drugs ; 9(6): 1157-1165, 2011.
Article in English | MEDLINE | ID: mdl-21747753

ABSTRACT

Chemical analysis of the Mediterranean ascidian Polyandrocarpa zorritensis (Van Name 1931) resulted in the isolation of a series of molecules including two monoindole alkaloids, 3-indolylglyoxylic acid (3) and its methyl ester (4), 4-hydroxy-3-methoxyphenylglyoxylic acid methyl ester (1) and a new alkaloid we named zorrimidazolone (2). The structure of the novel compound 2 has been elucidated by spectroscopic analysis and bioactivity of all compounds has been investigated. Zorrimidazolone (2) showed a modest cytotoxic activity against C6 rat glioma cell line.


Subject(s)
Alkaloids/chemistry , Alkaloids/pharmacology , Imidazoles/chemistry , Imidazoles/pharmacology , Urochordata/chemistry , Alkaloids/isolation & purification , Animals , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor/methods , HeLa Cells , Humans , Imidazoles/isolation & purification , Inhibitory Concentration 50 , Mediterranean Sea , Rats
13.
Article in English | MEDLINE | ID: mdl-18996940

ABSTRACT

Mumijo is a widely used traditional medicine, especially in Russia, Altai Mountains, Mongolia, Iran Kasachstan and in Kirgistan. Mumijo preparations have been successfully used for the prevention and treatment of infectious diseases; they display immune-stimulating and antiallergic activity as well. In the present study, we investigate the chemical composition and the biomedical potential of a Mumijo(-related) product collected from the Antarctica. The yellow material originates from the snow petrels, Pagodroma nivea. Extensive purification and chemical analysis revealed that the fossil samples are a mixture of glycerol derivatives. In vitro experiments showed that the Mumijo extract caused in cortical neurons a strong neuroprotective effect against the apoptosis-inducing amyloid peptide fragment ß-fragment 25-35 (Aß25-35). In addition, the fraction rich in glycerol ethers/wax esters displayed a significant growth-promoting activity in permanent neuronal PC12 cells. It is concluded that this new Mumijo preparation has distinct and marked neuroprotective activity, very likely due to the content of glycerol ether derivatives.

14.
J Nat Prod ; 73(4): 620-2, 2010 Apr 23.
Article in English | MEDLINE | ID: mdl-20353167

ABSTRACT

A new pyridinium derivative, polyaxibetaine (3), has been isolated from the marine sponge Axinella polypoides, together with two known modified amino acids, 1 and 2. The planar structure of compound 3 has been elucidated by spectroscopic methods; definition of the absolute configuration of compounds 1-3 has been carried out through ECD studies.


Subject(s)
Axinella/chemistry , Pyridinium Compounds/isolation & purification , Amino Acids/chemistry , Amino Acids/isolation & purification , Animals , Marine Biology , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Pyridinium Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...