Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
mBio ; 15(4): e0031924, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38441981

ABSTRACT

Trypanosoma cruzi is the etiologic agent of the most prevalent human parasitic disease in Latin America, Chagas disease. Its genome is rich in multigenic families that code for virulent antigens and are present in the rapidly evolving genomic compartment named Disruptive. DNA replication is a meticulous biological process in which flaws can generate mutations and changes in chromosomal and gene copy numbers. Here, integrating high-throughput and single-molecule analyses, we were able to identify Predominant, Flexible, and Dormant Orc1Cdc6-dependent origins as well as Orc1Cdc6-independent origins. Orc1Cdc6-dependent origins were found in multigenic family loci, while independent origins were found in the Core compartment that contains conserved and hypothetical protein-coding genes, in addition to multigenic families. In addition, we found that Orc1Cdc6 density is related to the firing of origins and that Orc1Cdc6-binding sites within fired origins are depleted of a specific class of nucleosomes that we previously categorized as dynamic. Together, these data suggest that Orc1Cdc6-dependent origins may contribute to the rapid evolution of the Disruptive compartment and, therefore, to the success of T. cruzi infection and that the local epigenome landscape is also involved in this process.IMPORTANCETrypanosoma cruzi, responsible for Chagas disease, affects millions globally, particularly in Latin America. Lack of vaccine or treatment underscores the need for research. Parasite's genome, with virulent antigen-coding multigenic families, resides in the rapidly evolving Disruptive compartment. Study sheds light on the parasite's dynamic DNA replication, discussing the evolution of the Disruptive compartment. Therefore, the findings represent a significant stride in comprehending T. cruzi's biology and the molecular bases that contribute to the success of infection caused by this parasite.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Humans , Trypanosoma cruzi/genetics , Replication Origin , Chagas Disease/parasitology , Gene Dosage , Chromosomes
2.
mBio, v. 15, n. 4, e00319-24, fev. 2024
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5277

ABSTRACT

Trypanosoma cruzi is the etiologic agent of the most prevalent human parasitic disease in Latin America, Chagas disease. Its genome is rich in multigenic families that code for virulent antigens and are present in the rapidly evolving genomic compartment named Disruptive. DNA replication is a meticulous biological process in which flaws can generate mutations and changes in chromosomal and gene copy numbers. Here, integrating high-throughput and single-molecule analyses, we were able to identify Predominant, Flexible, and Dormant Orc1Cdc6-dependent origins as well as Orc1Cdc6-independent origins. Orc1Cdc6-dependent origins were found in multigenic family loci, while independent origins were found in the Core compartment that contains conserved and hypothetical protein-coding genes, in addition to multigenic families. In addition, we found that Orc1Cdc6 density is related to the firing of origins and that Orc1Cdc6-binding sites within fired origins are depleted of a specific class of nucleosomes that we previously categorized as dynamic. Together, these data suggest that Orc1Cdc6-dependent origins may contribute to the rapid evolution of the Disruptive compartment and, therefore, to the success of T. cruzi infection and that the local epigenome landscape is also involved in this process.

3.
J of Cell Sci, v. 136, n. 10, jcs260828, abr. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4910

ABSTRACT

Genomic replication is a critical, regulated process that ensures accurate genetic information duplication. In eukaryotic cells, strategies have evolved to prevent conflicts between replication and transcription. Giardia lamblia, a binucleated protozoan, alternates between tetraploid and octoploid genomes during its cell cycle. Using single-molecule techniques like DNA combing and nanopore-based sequencing, we investigated the spatio-temporal organization of DNA replication, replication fork progression, and potential head-on replication-transcription collisions in Giardia trophozoites. Our findings indicate that Giardia chromosomes are replicated from few active origins, which are widely spaced and exhibit faster replication rates compared to other protozoan parasites. Immunofluorescence assays revealed that around 20% of trophozoites show asynchronous replication between nuclei. Forksense and gene ontology analyses disclosed that genes in regions with potential head-on collisions are linked to chromatin dynamics, cell cycle regulation, and DNA replication/repair pathways, possibly explaining the observed asynchronous replication in part of the population. This study offers the first comprehensive view of replication dynamics in Giardia, the cause of giardiasis, a diarrheal disease impacting millions worldwide.

4.
PLoS Pathog ; 18(2): e1009694, 2022 02.
Article in English | MEDLINE | ID: mdl-35180281

ABSTRACT

Histone variants play a crucial role in chromatin structure organization and gene expression. Trypanosomatids have an unusual H2B variant (H2B.V) that is known to dimerize with the variant H2A.Z generating unstable nucleosomes. Previously, we found that H2B.V protein is enriched in tissue-derived trypomastigote (TCT) life forms, a nonreplicative stage of Trypanosoma cruzi, suggesting that this variant may contribute to the differences in chromatin structure and global transcription rates observed among parasite life forms. Here, we performed the first genome-wide profiling of histone localization in T. cruzi using epimastigotes and TCT life forms, and we found that H2B.V was preferentially located at the edges of divergent transcriptional strand switch regions, which encompass putative transcriptional start regions; at some tDNA loci; and between the conserved and disrupted genome compartments, mainly at trans-sialidase, mucin and MASP genes. Remarkably, the chromatin of TCT forms was depleted of H2B.V-enriched peaks in comparison to epimastigote forms. Interactome assays indicated that H2B.V associated specifically with H2A.Z, bromodomain factor 2, nucleolar proteins and a histone chaperone, among others. Parasites expressing reduced H2B.V levels were associated with higher rates of parasite differentiation and mammalian cell infectivity. Taken together, H2B.V demarcates critical genomic regions and associates with regulatory chromatin proteins, suggesting a scenario wherein local chromatin structures associated with parasite differentiation and invasion are regulated during the parasite life cycle.


Subject(s)
Parasites , Trypanosoma cruzi , Animals , Chromatin , Histones/genetics , Histones/metabolism , Mammals , Nucleosomes , Parasites/metabolism , Trypanosoma cruzi/genetics , Trypanosoma cruzi/metabolism
5.
PLoS Pathog, v. 18, n. 2, e1009694, fev. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4217

ABSTRACT

Histone variants play a crucial role in chromatin structure organization and gene expression. Trypanosomatids have an unusual H2B variant (H2B.V) that is known to dimerize with the variant H2A.Z generating unstable nucleosomes. Previously, we found that H2B.V protein is enriched in tissue-derived trypomastigote (TCT) life forms, a nonreplicative stage of Trypanosoma cruzi, suggesting that this variant may contribute to the differences in chromatin structure and global transcription rates observed among parasite life forms. Here, we performed the first genome-wide profiling of histone localization in T. cruzi using epimastigotes and TCT life forms, and we found that H2B.V was preferentially located at the edges of divergent transcriptional strand switch regions, which encompass putative transcriptional start regions; at some tDNA loci; and between the conserved and disrupted genome compartments, mainly at trans-sialidase, mucin and MASP genes. Remarkably, the chromatin of TCT forms was depleted of H2B.V-enriched peaks in comparison to epimastigote forms. Interactome assays indicated that H2B.V associated specifically with H2A.Z, bromodomain factor 2, nucleolar proteins and a histone chaperone, among others. Parasites expressing reduced H2B.V levels were associated with higher rates of parasite differentiation and mammalian cell infectivity. Taken together, H2B.V demarcates critical genomic regions and associates with regulatory chromatin proteins, suggesting a scenario wherein local chromatin structures associated with parasite differentiation and invasion are regulated during the parasite life cycle.

6.
Genes, v. 11, n. 5, 523, mai. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3041

ABSTRACT

Single-celled eukaryote genomes predominantly replicate through multiple origins. Although origin usage during the S-phase has been elucidated in some of these organisms, few studies have comparatively approached this dynamic. Here, we developed a user-friendly website able to calculate the length of the cell cycle phases for any organism. Next, using a formula developed by our group, we showed a comparative analysis among the minimum number of replication origins (MO) required to duplicate an entire chromosome within the S-phase duration in trypanosomatids (Trypanosoma cruzi, Leishmania major, and Trypanosoma brucei) and yeasts (Saccharomyces cerevisiae and Schizosaccharomyces pombe). Using the data obtained by our analysis, it was possible to predict the MO required in a situation of replication stress. Also, our findings allow establishing a threshold for the number of origins, which serves as a parameter for genome approaches that map origins. Moreover, our data suggest that when compared to yeasts, trypanosomatids use much more origins than the minimum needed. This is the first time a comparative analysis of the minimum number of origins has been successfully applied. These data may provide new insight into the understanding of the replication mechanism and a new methodological framework for studying single-celled eukaryote genomes.

7.
Genes ; 11(5): 523, 2020.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17676

ABSTRACT

Single-celled eukaryote genomes predominantly replicate through multiple origins. Although origin usage during the S-phase has been elucidated in some of these organisms, few studies have comparatively approached this dynamic. Here, we developed a user-friendly website able to calculate the length of the cell cycle phases for any organism. Next, using a formula developed by our group, we showed a comparative analysis among the minimum number of replication origins (MO) required to duplicate an entire chromosome within the S-phase duration in trypanosomatids (Trypanosoma cruzi, Leishmania major, and Trypanosoma brucei) and yeasts (Saccharomyces cerevisiae and Schizosaccharomyces pombe). Using the data obtained by our analysis, it was possible to predict the MO required in a situation of replication stress. Also, our findings allow establishing a threshold for the number of origins, which serves as a parameter for genome approaches that map origins. Moreover, our data suggest that when compared to yeasts, trypanosomatids use much more origins than the minimum needed. This is the first time a comparative analysis of the minimum number of origins has been successfully applied. These data may provide new insight into the understanding of the replication mechanism and a new methodological framework for studying single-celled eukaryote genomes.

8.
Sci rep, v. 9, p. 18512, dec. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2879

ABSTRACT

The co-synthesis of DNA and RNA potentially generates conflicts between replication and transcription, which can lead to genomic instability. In trypanosomatids, eukaryotic parasites that perform polycistronic transcription, this phenomenon and its consequences are still little studied. Here, we showed that the number of constitutive origins mapped in the Trypanosoma brucei genome is less than the minimum required to complete replication within S-phase duration. By the development of a mechanistic model of DNA replication considering replication-transcription conflicts and using immunofluorescence assays and DNA combing approaches, we demonstrated that the activation of non-constitutive (backup) origins are indispensable for replication to be completed within S-phase period. Together, our findings suggest that transcription activity during S phase generates R-loops, which contributes to the emergence of DNA lesions, leading to the firing of backup origins that help maintain robustness in S-phase duration. The usage of this increased pool of origins, contributing to the maintenance of DNA replication, seems to be of paramount importance for the survival of this parasite that affects million people around the world.

9.
Sci. rep. ; 9: 18512, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17294

ABSTRACT

The co-synthesis of DNA and RNA potentially generates conflicts between replication and transcription, which can lead to genomic instability. In trypanosomatids, eukaryotic parasites that perform polycistronic transcription, this phenomenon and its consequences are still little studied. Here, we showed that the number of constitutive origins mapped in the Trypanosoma brucei genome is less than the minimum required to complete replication within S-phase duration. By the development of a mechanistic model of DNA replication considering replication-transcription conflicts and using immunofluorescence assays and DNA combing approaches, we demonstrated that the activation of non-constitutive (backup) origins are indispensable for replication to be completed within S-phase period. Together, our findings suggest that transcription activity during S phase generates R-loops, which contributes to the emergence of DNA lesions, leading to the firing of backup origins that help maintain robustness in S-phase duration. The usage of this increased pool of origins, contributing to the maintenance of DNA replication, seems to be of paramount importance for the survival of this parasite that affects million people around the world.

10.
J Eukaryot Microbiol, v. 65, n. 3, p. 345-356, maio/jun. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2510

ABSTRACT

Replication protein A (RPA), the major eukaryotic single-stranded binding protein, is a heterotrimeric complex formed by RPA-1, RPA-2, and RPA-3. RPA is a fundamental player in replication, repair, recombination, and checkpoint signaling. In addition, increasing evidences have been adding functions to RPA in telomere maintenance, such as interaction with telomerase to facilitate its activity and also involvement in telomere capping in some conditions. Trypanosoma cruzi, the etiological agent of Chagas disease is a protozoa parasite that appears early in the evolution of eukaryotes. Recently, we have showed that T. cruzi RPA presents canonical functions being involved with DNA replication and DNA damage response. Here, we found by FISH/IF assays that T. cruzi RPA localizes at telomeres even outside replication (S) phase. In vitro analysis showed that one telomeric repeat is sufficient to bind RPA-1. Telomeric DNA induces different secondary structural modifications on RPA-1 in comparison with other types of DNA. In addition, RPA-1 presents a higher affinity for telomeric sequence compared to randomic sequence, suggesting that RPA may play specific roles in T. cruzi telomeric region.

11.
J. Eukaryot. Microbiol. ; 65(3): p. 345-356, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15270

ABSTRACT

Replication protein A (RPA), the major eukaryotic single-stranded binding protein, is a heterotrimeric complex formed by RPA-1, RPA-2, and RPA-3. RPA is a fundamental player in replication, repair, recombination, and checkpoint signaling. In addition, increasing evidences have been adding functions to RPA in telomere maintenance, such as interaction with telomerase to facilitate its activity and also involvement in telomere capping in some conditions. Trypanosoma cruzi, the etiological agent of Chagas disease is a protozoa parasite that appears early in the evolution of eukaryotes. Recently, we have showed that T. cruzi RPA presents canonical functions being involved with DNA replication and DNA damage response. Here, we found by FISH/IF assays that T. cruzi RPA localizes at telomeres even outside replication (S) phase. In vitro analysis showed that one telomeric repeat is sufficient to bind RPA-1. Telomeric DNA induces different secondary structural modifications on RPA-1 in comparison with other types of DNA. In addition, RPA-1 presents a higher affinity for telomeric sequence compared to randomic sequence, suggesting that RPA may play specific roles in T. cruzi telomeric region.

SELECTION OF CITATIONS
SEARCH DETAIL
...