Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(12): 10954-10967, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37008090

ABSTRACT

In the present study, we have improvised a biogenic method to fabricate zinc oxide nanoparticles (ZnO NPs) using chitosan and an aqueous extract of the leaves of Elsholtzia blanda. Characterization of the fabricated products was carried out with the help of ultraviolet-visible, Fourier transform infrared, X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, and energy-dispersive X-ray analyses. The size of the improvised ZnO NP measured between 20 and 70 nm and had a spherical and hexagonal shape. The ZnO NPs proved to be highly effective in the antidiabetic test as the sample showed the highest percentage of enzyme inhibition at 74% ± 3.7, while in the antioxidant test, 78% was the maximum percentage of 2,2-diphenyl-1-picrylhydrazyl hydrate scavenging activity. The cytotoxic effect was investigated against the human osteosarcoma (MG-63) cell line, and the IC50 value was 62.61 µg/mL. Photocatalytic efficiency was studied by the degradation of Congo red where 91% of dye degradation was observed. From the various analyses, it can be concluded that the as-synthesized NPs may be suitable for various biomedical applications as well as for environmental remediation.

2.
J Nanosci Nanotechnol ; 19(5): 2640-2648, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30501761

ABSTRACT

The purpose of this study is to minimize the negative impacts of synthetic procedures and to develop environmentally benign procedures for the synthesis of metallic nanoparticles. In the present study, Passiflora edulis f. flavicarpa (P. edulis) aqueous leaf extract mediated green synthesis of silver nanoparticles are described. The synthesized silver nanoparticles were characterized by UV-Vis Spectroscopy, Fluorescence Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) Transmission Electron Microscopy (TEM) and Cyclic Voltammetry (CV). The silver nanoparticles (AgNPs) showed antibacterial activities against both gram positive (staphylococcus) and gram negative (Escherichia coli) bacteria. The efficacy of the synthesized silver nanoparticles (AgNPs) was demonstrated as catalyst in the photocatalytic degradation of Methyl Orange (MO) and Methylene Blue (MB) dyes which were measured spectrophotometrically. The study revealed that biosynthesized silver nanoparticles using Passiflora. edulis f. flavicarpa, plant extract was found to be very effective as antioxidant agent.


Subject(s)
Metal Nanoparticles , Passiflora , Anti-Bacterial Agents , Antioxidants/pharmacology , Green Chemistry Technology , Microscopy, Electron, Transmission , Plant Extracts/pharmacology , Silver/pharmacology , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...