Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
J Biophotonics ; 17(1): e202300126, 2024 01.
Article in English | MEDLINE | ID: mdl-37545037

ABSTRACT

Laser speckle imaging (LSI) techniques have emerged as a promising method for visualizing functional blood vessels and tissue perfusion by analyzing the speckle patterns generated by coherent light interacting with living biological tissue. These patterns carry important biophysical tissue information including blood flow dynamics. The noninvasive, label-free, and wide-field attributes along with relatively simple instrumental schematics make it an appealing imaging modality in preclinical and clinical applications. The review outlines the fundamentals of speckle physics and the three categories of LSI techniques based on their degree of quantification: qualitative, semi-quantitative and quantitative. Qualitative LSI produces microvascular maps by capturing speckle contrast variations between blood vessels containing moving red blood cells and the surrounding static tissue. Semi-quantitative techniques provide a more accurate analysis of blood flow dynamics by accounting for the effect of static scattering on spatiotemporal parameters. Quantitative LSI such as optical speckle image velocimetry provides quantitative flow velocity measurements, which is inspired by the particle image velocimetry in fluid mechanics. Additionally, discussions regarding the prospects of future innovations in LSI techniques for optimizing the vascular flow quantification with associated clinical outlook are presented.


Subject(s)
Diagnostic Imaging , Hemodynamics , Lasers , Light
2.
Sci Rep ; 13(1): 2231, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36755076

ABSTRACT

Backscattered circularly polarized light from turbid media consists of helicity-flipped and helicity-preserved photon sub-populations (i.e., photons of perpendicular and parallel circular handedness). Their intensities and spatial distributions are found to be acutely sensitive to average scatterer size and modestly sensitive to the scattering coefficient (medium turbidity) through an interplay of single and multiple scattering effects. Using a highly sensitive intensified-CCD camera, helicity-based images of backscattered light are captured, which, with the aid of corroborating Monte Carlo simulation images and statistics, enable (1) investigation of subsurface photonic pathways and (2) development of the novel 'spatial helicity response' metric to quantify average scatterer size and turbidity of tissue-like samples. An exciting potential application of this work is noninvasive early cancer detection since malignant tissues exhibit alterations in scatterer size (larger nuclei) and turbidity (increased cell density).

3.
Sci Rep ; 12(1): 13995, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35978040

ABSTRACT

The dominant consequence of irradiating biological systems is cellular damage, yet microvascular damage begins to assume an increasingly important role as the radiation dose levels increase. This is currently becoming more relevant in radiation medicine with its pivot towards higher-dose-per-fraction/fewer fractions treatment paradigm (e.g., stereotactic body radiotherapy (SBRT)). We have thus developed a 3D preclinical imaging platform based on speckle-variance optical coherence tomography (svOCT) for longitudinal monitoring of tumour microvascular radiation responses in vivo. Here we present an artificial intelligence (AI) approach to analyze the resultant microvascular data. In this initial study, we show that AI can successfully classify SBRT-relevant clinical radiation dose levels at multiple timepoints (t = 2-4 weeks) following irradiation (10 Gy and 30 Gy cohorts) based on induced changes in the detected microvascular networks. Practicality of the obtained results, challenges associated with modest number of animals, their successful mitigation via augmented data approaches, and advantages of using 3D deep learning methodologies, are discussed. Extension of this encouraging initial study to longitudinal AI-based time-series analysis for treatment outcome predictions at finer dose level gradations is envisioned.


Subject(s)
Neoplasms , Radiosurgery , Animals , Artificial Intelligence , Microvessels/diagnostic imaging , Microvessels/pathology , Neoplasms/diagnostic imaging , Neoplasms/pathology , Neoplasms/radiotherapy , Radiosurgery/methods , Radiotherapy Dosage , Tomography, Optical Coherence/methods
4.
Sci Rep ; 12(1): 6140, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35414078

ABSTRACT

Stereotactic body radiotherapy (SBRT) is an emerging cancer treatment due to its logistical and potential therapeutic benefits as compared to conventional radiotherapy. However, its mechanism of action is yet to be fully understood, likely involving the ablation of tumour microvasculature by higher doses per fraction used in SBRT. In this study, we hypothesized that longitudinal imaging and quantification of the vascular architecture may elucidate the relationship between the microvasculature and tumour response kinetics. Pancreatic human tumour xenografts were thus irradiated with single doses of [Formula: see text], [Formula: see text] and [Formula: see text] Gy to simulate the first fraction of a SBRT protocol. Tumour microvascular changes were monitored with optical coherence angiography for up to [Formula: see text] weeks following irradiation. The temporal kinetics of two microvascular architectural metrics were studied as a function of time and dose: the diffusion-limited fraction, representing poorly vascularized tissue [Formula: see text] µm from the nearest detected vessel, and the vascular distribution convexity index, a measure of vessel aggregation at short distances. These biological metrics allowed for dose dependent temporal evaluation of tissue (re)vascularization and vessel aggregation after radiotherapy, showing promise for determining the SBRT dose-response relationship.


Subject(s)
Neoplasms , Radiosurgery , Angiography , Humans , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Radiosurgery/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
5.
Sci Rep ; 12(1): 3159, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35210476

ABSTRACT

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is emerging as a valuable tool for non-invasive volumetric monitoring of the tumor vascular status and its therapeutic response. However, clinical utility of DCE-MRI is challenged by uncertainty in its ability to quantify the tumor microvasculature ([Formula: see text] scale) given its relatively poor spatial resolution (mm scale at best). To address this challenge, we directly compared DCE-MRI parameter maps with co-registered micron-scale-resolution speckle variance optical coherence tomography (svOCT) microvascular images in a window chamber tumor mouse model. Both semi and fully quantitative (Toft's model) DCE-MRI metrics were tested for correlation with microvascular svOCT biomarkers. svOCT's derived vascular volume fraction (VVF) and the mean distance to nearest vessel ([Formula: see text]) metrics were correlated with DCE-MRI vascular biomarkers such as time to peak contrast enhancement ([Formula: see text] and [Formula: see text] respectively, [Formula: see text] for both), the area under the gadolinium-time concentration curve ([Formula: see text] and [Formula: see text] respectively, [Formula: see text] for both) and [Formula: see text] ([Formula: see text] and [Formula: see text] respectively, [Formula: see text] for both). Several other correlated micro-macro vascular metric pairs were also noted. The microvascular insights afforded by svOCT may help improve the clinical utility of DCE-MRI for tissue functional status assessment and therapeutic response monitoring applications.

6.
Biomed Opt Express ; 12(11): 6831-6843, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34858683

ABSTRACT

The effects of scatterer size and scattering coefficient on backscattered linearly and circularly polarized light are investigated through Stokes polarimetry. High-SNR polarization modulation/synchronous detection measurements are corroborated by polarization-sensitive Monte Carlo simulations. Circular degree of polarization (DOP) is found to be sensitive to scatterer size, but is equivocal at times due to helicity flipping effects; linear DOP appears to be mostly dependent on the medium scattering coefficient. We exploit these trends to generate a DOPC - DOPL response surface which clusters turbid samples based on these medium properties. This work may prove useful in biomedicine, for example in noninvasive assessment of epithelial precancer progression.

7.
Biomed Opt Express ; 12(5): 2952-2967, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34123510

ABSTRACT

Texture analyses of optical coherence tomography (OCT) images have shown initial promise for differentiation of normal and tumor tissues. This work develops a fully automatic volumetric tumor delineation technique employing quantitative OCT image speckle analysis based on Gamma distribution fits. We test its performance in-vivo using immunodeficient mice with dorsal skin window chambers and subcutaneously grown tumor models. Tumor boundaries detection is confirmed using epi-fluorescence microscopy, combined photoacoustic-ultrasound imaging, and histology. Pilot animal study of tumor response to radiotherapy demonstrates high accuracy, objective nature, novelty of the proposed method in the volumetric separation of tumor and normal tissues, and the sensitivity of the fitting parameters to radiation-induced tissue changes. Overall, the developed methodology enables hitherto impossible longitudinal studies for detecting subtle tissue alterations stemming from therapeutic insult.

8.
Cancers (Basel) ; 12(7)2020 Jul 18.
Article in English | MEDLINE | ID: mdl-32708501

ABSTRACT

Treatment using light-activated photosensitizers (photodynamic therapy, PDT) has shown limited efficacy in pigmented melanoma, mainly due to the poor penetration of light in this tissue. Here, an optical clearing agent (OCA) was applied topically to a cutaneous melanoma model in mice shortly before PDT to increase the effective treatment depth by reducing the light scattering. This was used together with cellular and vascular-PDT, or a combination of both. The effect on tumor growth was measured by longitudinal ultrasound/photoacoustic imaging in vivo and by immunohistology after sacrifice. In a separate dorsal window chamber tumor model, angiographic optical coherence tomography (OCT) generated 3D tissue microvascular images, enabling direct in vivo assessment of treatment response. The optical clearing had minimal therapeutic effect on the in control, non-pigmented cutaneous melanomas but a statistically significant effect (p < 0.05) in pigmented lesions for both single- and dual-photosensitizer treatment regimes. The latter enabled full-depth eradication of tumor tissue, demonstrated by the absence of S100 and Ki67 immunostaining. These studies are the first to demonstrate complete melanoma response to PDT in an immunocompromised model in vivo, with quantitative assessment of tumor volume and thickness, confirmed by (immuno) histological analyses, and with non-pigmented melanomas used as controls to clarify the critical role of melanin in the PDT response. The results indicate the potential of OCA-enhanced PDT for the treatment of pigmented lesions, including melanoma.

9.
Biomed Opt Express ; 10(8): 4207-4219, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31453005

ABSTRACT

Analysis of semi-transparent low scattering biological structures in optical coherence tomography (OCT) has been actively pursued in the context of lymphatic imaging, with most approaches relying on the relative absence of signal as a means of detection. Here we present an alternate methodology based on spatial speckle statistics, utilizing the similarity of a distribution of given voxel intensities to the power distribution function of pure noise, to visualize the low-scattering biological structures of interest. In a human tumor xenograft murine model, we show that these correspond to lymphatic vessels and nerves; extensive histopathologic validation studies are reported to unequivocally establish this correspondence. The emerging possibility of OCT lymphangiography and neurography is novel and potentially impactful (especially the latter), although further methodology refinement is needed to distinguish between the visualized lymphatics and nerves.

10.
J Biomed Opt ; 23(10): 1-9, 2018 10.
Article in English | MEDLINE | ID: mdl-30315644

ABSTRACT

Radiation therapy (RT) is widely and effectively used for cancer treatment but can also cause deleterious side effects, such as a late-toxicity complication called radiation-induced fibrosis (RIF). Accurate diagnosis of RIF requires analysis of histological sections to assess extracellular matrix infiltration. This is invasive, prone to sampling limitations, and thus rarely used; instead, current practice relies on subjective clinical surrogates, including visual observation, palpation, and patient symptomatology questionnaires. This preclinical study demonstrates that functional optical coherence tomography (OCT) is a useful tool for objective noninvasive in-vivo assessment and quantification of fibrosis-associated microvascular changes in tissue. Data were collected from murine hind limbs 6 months after 40-Gy single-dose irradiation and compared with nonirradiated contralateral tissues of the same animals. OCT-derived vascular density and average vessel diameter metrics were compared to quantitative vascular analysis of stained histological slides. Results indicate that RIF manifests significant microvascular changes at this time point posttreatment. Abnormal microvascular changes visualized by OCT in this preclinical setting suggest the potential of this label-free high-resolution noninvasive functional imaging methodology for RIF diagnosis and assessment in the context of clinical RT.


Subject(s)
Fibrosis/diagnostic imaging , Microcirculation/radiation effects , Radiotherapy/adverse effects , Skin , Tomography, Optical Coherence/methods , Animals , Female , Hindlimb/blood supply , Hindlimb/diagnostic imaging , Hindlimb/radiation effects , Mice , Mice, Inbred C3H , Radiation Injuries, Experimental/diagnostic imaging , Skin/blood supply , Skin/diagnostic imaging , Skin/radiation effects
11.
J Biophotonics ; 11(12): e201800036, 2018 12.
Article in English | MEDLINE | ID: mdl-29971932

ABSTRACT

Polarization-sensitive second harmonic generation (p-SHG) is a nonlinear optical microscopy technique that has shown great promise in biomedicine, such as in detecting changes in the collagen ultrastructure of the tumor microenvironment. However, the complex nature of light-tissue interactions and the heterogeneity of biological samples pose challenges in creating an analytical and experimental quantification platform for tissue characterization via p-SHG. We present a Monte Carlo (MC) p-SHG simulation model based on double Stokes-Mueller polarimetry for the investigation of nonlinear light-tissue interaction. The MC model predictions are compared with experimental measurements of second-order nonlinear susceptibility component ratio and degree of polarization (DOP) in rat-tail collagen. The observed trends in the behavior of these parameters as a function of tissue thickness, as well as the overall extent of agreement between MC and experimental results, are discussed. High sensitivities of the susceptibility ratio and DOP are observed for the varying tissue thickness on the incoming fundamental light propagation pathway.


Subject(s)
Microscopy , Monte Carlo Method , Algorithms , Animals , Collagen/metabolism , Image Processing, Computer-Assisted , Rats
12.
Sci Rep ; 8(1): 38, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29311686

ABSTRACT

Radiation therapy (RT) is widely used for cancer treatment, alone or in combination with other therapies. Recent RT advances have revived interest in delivering higher dose in fewer fractions, which may invoke both cellular and microvascular damage mechanisms. Microvasculature may thus be a potentially sensitive functional biomarker of RT early response, especially for such emerging RT treatments. However it is difficult to measure directly and non-invasively, and its time course, dose dependencies, and overall importance in tumor control are unclear. We use functional optical coherence tomography for quantitative longitudinal in vivo imaging in preclinical models of human tumor xenografts subjected to 10, 20 and 30 Gy doses, furnishing a detailed assessment of vascular remodeling following RT. Immediate (minutes to tens of minutes) and early (days to weeks) RT responses of microvascular supply, as well as tumor volume and fluorescence intensity, were quantified and demonstrated robust and complex temporal dose-dependent behaviors. The findings were compared to theoretical models proposed in the literature.


Subject(s)
Neoplasms/diagnostic imaging , Neoplasms/pathology , Neovascularization, Pathologic/diagnostic imaging , Tomography, Optical Coherence , Animals , Disease Models, Animal , Humans , Image Processing, Computer-Assisted , Mice , Neoplasms/radiotherapy , Radiation, Ionizing , Tomography, Optical Coherence/methods , Xenograft Model Antitumor Assays
13.
Sci Rep ; 7(1): 11958, 2017 09 20.
Article in English | MEDLINE | ID: mdl-28931853

ABSTRACT

Polarimetry is a noninvasive method that uses polarised light to assess biophysical characteristics of tissues. A series of incident polarisation states illuminates a biological sample, and analysis of sample-altered polarisation states enables polarimetric tissue assessment. The resultant information can, for example, help quantitatively differentiate healthy from pathologic tissue. However, most bio-polarimetric assessments are performed using free-space optics with bulky optical components. Extension to flexible fibre-based systems is clinically desirable, but is challenging due to polarisation-altering properties of optical fibres. Here, we propose a flexible fibre-based polarimetric solution, and describe its design, fabrication, calibration, and initial feasibility demonstration in ex vivo tissue. The design is based on a flexible fibre bundle of six multimode optical fibres, each terminated with a distal polariser that ensures pre-determined output polarisation states. The resultant probe enables linear 3 × 3 Mueller matrix characterization of distal tissue. Potential in vivo Mueller matrix polarimetric tissue examinations in various directly-inaccessible body cavities are envisioned.

14.
Biomed Opt Express ; 8(4): 2004-2017, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28736652

ABSTRACT

A closed-form analytical expression is obtained for the spatio-temporal correlation function of the scattered radiation detected in fiber-based optical coherence tomography (OCT), assuming a clean optical system arrangement in the OCT sample arm. It is shown that the transverse flow component causes purely translational speckle motion with the predicted speckle velocity 2x higher than the velocity of the flowing particles as would be observed in the image plane under incoherent illumination. It is also shown that both speckle velocity and speckle radius do not depend on the position of the scattering volume relative to the focal plane, hence the derived correlation function is independent of the position of the scattering volume relative to the focal plane. Although the analytical results are obtained for a clean optical system arrangement, they can be used with high accuracy in most practical implementations of fiber based OCT. Validation experiments in control scattering phantoms with varying liquid viscosities show excellent agreement with the developed theoretical model, under both no-flow and flow conditions. Accurate viscosity determinations enabled by this methodology may have applications to non-invasive glucose measurements in medicine.

15.
J Biomed Opt ; 21(7): 76014, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27533242

ABSTRACT

Gas microbubbles (MBs) are investigated as intravascular optical coherence tomography (OCT) contrast agents. Agar + intralipid scattering tissue phantoms with two embedded microtubes were fabricated to model vascular blood flow. One was filled with human blood, and the other with a mixture of human blood + MB. Swept-source structural and speckle variance (sv) OCT images, as well as speckle decorrelation times, were evaluated under both no-flow and varying flow conditions. Faster decorrelation times and higher structural and svOCT image contrasts were detected in the presence of MB in all experiments. The effects were largest in the svOCT imaging mode, and uniformly diminished with increasing flow velocity. These findings suggest the feasibility of utilizing MB for tissue hemodynamic investigations and for microvasculature contrast enhancement in OCT angiography.


Subject(s)
Microbubbles , Microvessels/diagnostic imaging , Tomography, Optical Coherence , Humans , Phantoms, Imaging
16.
J Biomed Opt ; 21(8): 081210, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27300502

ABSTRACT

Melanoma is the most aggressive type of skin cancer, with significant risk of fatality. Due to its pigmentation, light-based imaging and treatment techniques are limited to near the tumor surface, which is inadequate, for example, to evaluate the microvascular density that is associated with prognosis. White-light diffuse reflectance spectroscopy (DRS) and near-infrared optical coherence tomography (OCT) were used to evaluate the effect of a topically applied optical clearing agent (OCA) in melanoma in vivo and to image the microvascular network. DRS was performed using a contact fiber optic probe in the range from 450 to 650 nm. OCT imaging was performed using a swept-source system at 1310 nm. The OCT image data were processed using speckle variance and depth-encoded algorithms. Diffuse reflectance signals decreased with clearing, dropping by ∼ 90% after 45 min. OCT was able to image the microvasculature in the pigmented melanoma tissue with good spatial resolution up to a depth of ∼ 300 µm without the use of OCA; improved contrast resolution was achieved with optical clearing to a depth of ∼ 750 µm in tumor. These findings are relevant to potential clinical applications in melanoma, such as assessing prognosis and treatment responses. Optical clearing may also facilitate the use of light-based treatments such as photodynamic therapy.


Subject(s)
Contrast Media/chemistry , Melanoma/diagnostic imaging , Microvessels/diagnostic imaging , Skin Neoplasms/diagnostic imaging , Spectrum Analysis/methods , Tomography, Optical Coherence/methods , Animals , Cell Line, Tumor , Contrast Media/pharmacology , Mice , Mice, Nude , Skin/diagnostic imaging , Skin/drug effects
17.
Opt Lett ; 41(5): 1038-41, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26974110

ABSTRACT

A new polarimetry method is demonstrated to image the entire Mueller matrix of a turbid sample using four photoelastic modulators (PEMs) and a charge coupled device (CCD) camera, with no moving parts. Accurate wide-field imaging is enabled with a field-programmable gate array (FPGA) optical gating technique and an evolutionary algorithm (EA) that optimizes imaging times. This technique accurately and rapidly measured the Mueller matrices of air, polarization elements, and turbid phantoms. The system should prove advantageous for Mueller matrix analysis of turbid samples (e.g., biological tissues) over large fields of view, in less than a second.


Subject(s)
Elasticity , Optical Imaging/methods , Optical Phenomena , Birefringence , Time Factors
18.
J Biomed Opt ; 19(12): 127004, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25517256

ABSTRACT

The statistical model of scattered by flowing Brownian particles coherent radiation is suggested. The model includes the random Doppler shifts caused by particle Brownian motion and the speckle fluctuations caused primarily by the flow motion of particles. Analytical expressions are obtained for the correlation function, power spectrum, and spectral width of scattered radiation in the imaging geometry typically used in optical coherence tomography (OCT). It is shown that the spectral density has the Voigt shape, a well-known spectral profile from atomic and molecular spectroscopy. The approach enables the choice of the experimental regimes for the measurement of Brownian particle motion parameters even in the presence of flow. These regimes are characterized by the dominant contribution of Brownian motion in the spectral width of the flow-caused Doppler shift component. Further, the new formalism suggests that prior attempts to extract transverse flow velocity are only valid at near-perpendicular geometry. The impact of the small scattering volume contributing to the OCT signal is also discussed.


Subject(s)
Light , Scattering, Radiation , Tomography, Optical Coherence/methods , Equipment Design , Image Processing, Computer-Assisted , Models, Theoretical , Thermodynamics , Tomography, Optical Coherence/instrumentation
19.
Sci Rep ; 4: 6129, 2014 Aug 20.
Article in English | MEDLINE | ID: mdl-25139583

ABSTRACT

Multifractal, a special class of complex self-affine processes, are under recent intensive investigations because of their fundamental nature and potential applications in diverse physical systems. Here, we report on a novel light scattering-based inverse method for extraction/quantification of multifractality in the spatial distribution of refractive index of biological tissues. The method is based on Fourier domain pre-processing via the Born approximation, followed by the Multifractal Detrended Fluctuation Analysis. The approach is experimentally validated in synthetic multifractal scattering phantoms, and tested on biopsy tissue slices. The derived multifractal properties appear sensitive in detecting cervical precancerous alterations through an increase of multifractality with pathology progression, demonstrating the potential of the developed methodology for novel precancer biomarker identification and tissue diagnostic tool. The novel ability to delineate the multifractal optical properties from light scattering signals may also prove useful for characterizing a wide variety of complex scattering media of non-biological origin.

20.
Biomed Opt Express ; 5(2): 621-9, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24575354

ABSTRACT

Partial bladder outlet obstruction causes prominent morphological changes in the bladder wall, which leads to bladder dysfunction. In this paper, we demonstrate that polarized light imaging can be used to identify the location of obstruction induced structural changes that other imaging modalities fail to detect. We induced 2-week and 6-week partial outlet obstruction in rats, harvested obstructed bladders, then measured their retardances while distended to high pressures and compared them to controls. Our results show that the retardance of the central part of the ventral side (above the ureters) closer to the urethra can be used as a potential metric of the distending bladder obstruction.

SELECTION OF CITATIONS
SEARCH DETAIL
...