Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 11(6)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35745536

ABSTRACT

Legionella pneumophila (Lp), responsible for a severe pneumonia called Legionnaires' disease, represents an important health burden in Europe. Prevention and control of Lp contamination in warm water systems is still a great challenge often due to the failure in disinfection procedures. The aim of this study was to evaluate the in vitro activity of Terpinen-4-ol (T-4-ol) as potential agent for Lp control, in comparison with the essential oil of Melaleuca alternifolia (tea tree) (TTO. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of T-4-ol were determined by broth micro-dilution and a micro-atmosphere diffusion method to investigate the anti-Lp effects of T-4-ol and TTO vapors. Scanning Electron Microscopy (SEM) was adopted to highlight the morphological changes and Lp damage following T-4-ol and TTO treatments. The greatest antimicrobial activity against Lp was shown by T-4-ol with a MIC range of 0.06-0.125% v/v and MBC range of 0.25-0.5% v/v. The TTO and T-4-ol MIC and MBC decreased with increasing temperature (36 °C to 45 ± 1 °C), and temperature also significantly influenced the efficacy of TTO and T-4-ol vapors. The time-killing assay showed an exponential trend of T-4-ol bactericidal activity at 0.5% v/v against Lp. SEM observations revealed a concentration- and temperature- dependent effect of T-4-ol and TTO on cell surface morphology with alterations. These findings suggest that T-4-ol is active against Lp and further studies may address the potential effectiveness of T-4-ol for control of water systems.

2.
Free Radic Res ; 41(4): 452-60, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17454127

ABSTRACT

In this study, we found that production of both reactive oxygen (ROS) and nitrogen (RNS) species is a very early event related to treatment with hyperosmotic concentration of sorbitol. The production of nitric oxide (NO) was paralleled by the increase of the mRNA and protein level of the inducible form of the nitric oxide synthase (iNOS). ROS and RNS enhancement, process concomitant to the failure of mitochondrial trans-membrane potential (DeltaPsi), was necessary for the induction of apoptosis as demonstrated by the protection against sorbitol-mediated toxicity observed after treatment with ROS scavengers or NOS inhibitors. The synergistic action of ROS and RNS was finally demonstrated by pre-treatment with rosmarinic acid that, by powerfully buffering both these species, prevents impairment of DeltaPsi and cell death. Overall results suggest that the occurrence of apoptosis upon sorbitol treatment is an event mediated by oxidative/nitrosative stress rather than a canonical hyperosmotic shock.


Subject(s)
Apoptosis , Leukemia/pathology , Reactive Nitrogen Species , Reactive Oxygen Species , Sorbitol/pharmacology , Antioxidants/metabolism , Cell Line, Tumor , Cell Survival , Cinnamates/pharmacology , DNA Fragmentation , Depsides/pharmacology , Humans , K562 Cells , Membrane Potentials , Nitric Oxide Synthase Type II/metabolism , Time Factors , Rosmarinic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...