Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Microbiol ; 54(3): 2197-2204, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37261620

ABSTRACT

The aim of the work was to evaluate antagonistic activity of Lactobacillus spp. and Bifidobacterium spp. in vitro against cariogenic Streptococcus mutans UA 159 and viability in chewing gum, during storage. Antagonistic activity was evaluated in vitro by the "spot on the lawn" test. Two bacteria were chosen and subjected to lyophilization and microencapsulation using the atomization method, containing polyvinylpyrrolidone polymer and lactose as encapsulating agents. For application in food matrices, four treatments were elaborated: chewing gum containing lyophilized B. lactis B94 (BLL), microencapsulated B. lactis B94 (BLE), lyophilized L. brevis (LBL), and microencapsulated L. brevis (LBE). Both microorganisms demonstrated a high capacity for inhibition against S. mutans, when compared to oral antiseptic chlorhexidine 0.2% in vitro, and according to the test of sensitivity profile to proteolytic enzymes, all the bacteria tested are producers of antimicrobial peptides, resulting in the inhibitory activity of the cariogenic bacterium. Furthermore, the viability of B. lactis B94 and L. brevis was maintained after microencapsulation, indicating that the process was efficient, with no significant difference (p < 0.05) between the results. And, in the chewing gum containing the bacteria during the storage period (33 days), it was found that cell immobilization did not significantly influence (p < 0.05) the counts of L. brevis but benefited the viability of B. lactis B94. Therefore, both probiotic bacteria are producers of antimicrobial substances with the ability to inhibit S. mutans, in vitro. The microencapsulation was considered efficient since it influenced the viability of B. lactis B94 (> 8 log CFU/g); however, the microencapsulation did not influence the viability of L. brevis since in both lyophilized and encapsulated form; the concentration of the bacteria remained above 8 log CFU/g during the storage period of the chewing gum.


Subject(s)
Probiotics , Streptococcus mutans , Lactobacillus/physiology , Chewing Gum , Bifidobacterium/physiology , Probiotics/pharmacology
2.
Food Res Int ; 140: 109871, 2021 02.
Article in English | MEDLINE | ID: mdl-33648189

ABSTRACT

Sushi is a ready-to-eat (RTE) food prepared from raw or cooked fish that is widely consumed worldwide. Listeria monocytogenes is the foodborne pathogen most commonly associated with RTE and fish products. The aim of the present study was to evaluate the presence of L. monocytogenes in salmon sushi commercialized in Pelotas city, Brazil, and to evaluate the genetic diversity, biofilm-forming ability in stainless steel, and virulence characteristics of the isolates. Four sampling events were carried out in seven specialized sushi establishments totaling 28 sushi pools. Listeria monocytogenes was detected in six samples (21.4%) from two establishments (28.6%). All isolates belonged to serotype 4b and carried the prfA, plcA, plcB, hlyA, mpl, actA, inlA, inlC, inlJ, and iap genes. The inlB gene was not detected in two isolates. The PFGE analysis grouped the isolates into four pulsotypes. All isolates had the ability to form biofilm on stainless steel and the average of biofilm formation counts varied between 6.4 and 7.2 log CFU.cm-2. The isolates harbored the biofilm-related genes agrA, agrB, agrC, agrD, and prfA, with the exception of two isolates that did not harbor the agrD gene. The presence of L. monocytogenes in RTE sushi is a concern, demonstrating that sushi consumption may be a risk of human listeriosis. Furthermore, it was possible to identify the persistence of this pathogen for at least one month (pulsotypes III and IV), in two establishments (A and G), highlighting the need for improving the cleaning and sanitation procedures in establishments that commercialize RTE sushi.


Subject(s)
Listeria monocytogenes , Animals , Biofilms , Brazil , Food Microbiology , Genetic Variation , Humans , Listeria monocytogenes/genetics , Salmon , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...