Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 109(3-1): 034306, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38632724

ABSTRACT

Braided channel networks exhibit a complex interplay between spatial and temporal dynamics. Their behavior is characterized by both simple and multiscaling patterns, and the mechanisms underlying the stochastic processes associated with this dynamics remain incompletely understood. Leveraging Taylor's pioneering work [Nature (London) 189, 732 (1961)NATUAS0028-083610.1038/189732a0], which unveiled scaling relations in a plethora of natural phenomena through what is now known as the Taylor power law (TPL), we propose a physical interpretation of braided channel systems. This interpretation utilizes a specific class of transformation functions applied to the mean of fluvial geomorphic variables measured along cross sections, namely, the number of wet channels, the average width of wet channels, and the entropic braiding index. By analyzing remotely sensed data of the Brahmaputra-Jamuna River in Bangladesh we obtain valuable insight into the spatiotemporal scaling of these geomorphological variables and gather a deeper understanding of the complexity of braided channel systems. Finally, through a direct analysis employing the TPL in conjunction with a fixed-mass multifractal algorithm, we prove that braided channel networks exhibit a multiscaling behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...