Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-25954315

ABSTRACT

Vitex agnus-castus (VAC) is a plant that has recently been used to treat the symptoms of menopause, by its actions on the central nervous system. However, little is known about its actions on disturbances in lipid metabolism and nonalcoholic fat liver disease (NAFLD), frequently associated with menopause. Ovariectomized (OVX) rats exhibit increased adiposity and NAFLD 13 weeks after ovary removal and were used as animal models of estrogen deficiency. The rats were treated with crude extract (CE) and a butanolic fraction of VAC (ButF) and displayed the beneficial effects of a reduction in the adiposity index and a complete reversion of NAFLD. NAFLD reversion was accompanied by a general improvement in the liver redox status. The activities of some antioxidant enzymes were restored and the mitochondrial hydrogen peroxide production was significantly reduced in animals treated with CE and the ButF. It can be concluded that the CE and ButF from Vitex agnus-castus were effective in preventing NAFLD and oxidative stress, which are frequent causes of abnormal liver functions in the postmenopausal period.

2.
Exp Mol Pathol ; 91(3): 687-94, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21821020

ABSTRACT

The purpose of this work was to determine if mitochondrial dysfunction is involved in the development of non-alcoholic fatty liver disease (NAFLD). Using a model of obesity induced by the neonatal treatment of rats with monosodium L-glutamate (MSG), several parameters of liver mitochondrial function and their impact on liver redox status were evaluated. Specifically, fatty acid ß-oxidation, oxidative phosphorylation and Ca(2+)-induced mitochondrial permeability transition were assessed in isolated liver mitochondria, and reduced glutathione (GSH), linked thiol contents and the activities of several enzymes involved in the control of redox status were measured in the liver homogenate. Our results demonstrate that liver mitochondria from MSG-obese rats exhibit a higher ß-oxidation capacity and an increased capacity for oxidising succinate, without loss in the efficiency of oxidative phosphorylation. Also, liver mitochondria from obese rats were less susceptible to the permeability transition pore (PTP) opening induced by 1.0 µM CaCl(2). Cellular levels of GSH were unaffected in the livers from the MSG-obese rats, whereas reduced linked thiol contents were increased. The activities of glucose-6-phosphate dehydrogenase, glutathione reductase and glutathione peroxidase were increased, while catalase activity was unaffected and superoxide dismutase activity was reduced in the livers from the MSG-obese rats. In this model of obesity, liver fat accumulation is not a consequence of mitochondrial dysfunction. The enhanced glucose-6-phosphate dehydrogenase activity observed in the livers of MSG-obese rats could be associated with liver fat accumulation and likely plays a central role in the mitochondrial defence against oxidative stress.


Subject(s)
Fatty Liver/metabolism , Mitochondria, Liver/metabolism , Animals , Animals, Newborn , Fatty Liver/chemically induced , Fatty Liver/complications , Glucosephosphate Dehydrogenase/metabolism , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Male , Non-alcoholic Fatty Liver Disease , Obesity/chemically induced , Obesity/complications , Obesity/metabolism , Oxidation-Reduction , Oxidative Phosphorylation , Rats , Rats, Wistar , Sodium Glutamate/toxicity
3.
Braz. arch. biol. technol ; 54(1): 67-72, Jan.-Feb. 2011. graf, tab
Article in English | LILACS | ID: lil-576760

ABSTRACT

The effect of severe food restriction since birth on regulation of fasting glycemia in male Wistar rats was investigated. The control group (CG) had free supply of chow, while the restriction group (RG) received 50 percent of the amount ingested by the CG. The experiments were done in adult (60 days) overnight fasted rats in which glycemia, liver free glucose levels and hepatic glycogen concentration were measured. In part of the experiments in situ liver perfusion was done. The results showed that livers from the RG had higher glycogenolysis rates but lower gluconeogenesis rates from L-alanine (10 mM). Since RG showed maintained glycemia during fasting, it could be concluded that livers from RG produced glucose preferentially from glycogenolysis in detriment of gluconeogenesis. These findings demonstrated that in spite of severe caloric restriction, the metabolic adaptations of the liver did exist to assure the maintenance of blood glucose for brain supply during fasting.

SELECTION OF CITATIONS
SEARCH DETAIL
...