Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 206(12): 2839-2851, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34117106

ABSTRACT

Neonatal and infant immune responses are characterized by a limited capability to generate protective Ab titers and memory B cells as seen in adults. Multiple studies support an immature or even impaired character of umbilical cord blood (UCB) B cells themselves. In this study, we provide a comprehensive molecular and functional comparison of B cell subsets from UCB and adult peripheral blood. Most UCB B cells have a mature, naive B cell phenotype as seen in adults. The UCB Ig repertoire is highly variable but interindividually conserved, as BCR clonotypes are frequently shared between neonates. Furthermore, UCB B cells show a distinct transcriptional program that confers accelerated responsiveness to stimulation and facilitated IgA class switching. Stimulation drives extensive differentiation into Ab-secreting cells, presumably limiting memory B cell formation. Humanized mice suggest that the distinctness of UCB versus adult B cells is already reflected by the developmental program of hematopoietic precursors, arguing for a layered B-1/B-2 lineage system as in mice, albeit our findings suggest only partial comparability to murine B-1 cells. Our study shows that UCB B cells are not immature or impaired but differ from their adult mature counterpart in a conserved BCR repertoire, efficient IgA class switching, and accelerated, likely transient response dynamics.


Subject(s)
B-Lymphocytes/immunology , Fetal Blood/immunology , Immunoglobulins/immunology , Animals , Child , Child, Preschool , Female , Humans , Infant , Male , Mice , Mice, Congenic , Mice, Inbred NOD , Receptors, Antigen, B-Cell/immunology
2.
Stem Cells Dev ; 24(17): 2018-31, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-25961873

ABSTRACT

Human hematopoietic stem and progenitor cells (HSPCs) from umbilical cord blood exhibit higher differentiation potential and repopulation capacity compared to adult HSPCs. The molecular basis for these functional differences is currently unknown. Upon screening for epigenetic effector genes being differentially expressed in neonatal and adult HSPC subpopulations, the Polycomb Repressive Complex 2 (PRC2) member EED was identified. Even though EED is expressed at comparable amounts in neonatal and adult multipotent HSPCs, early adult lineage committed progenitors of the lymphomyeloid (LM) and erythromyeloid lineages expressed higher EED amounts than neonatal HPCs. We demonstrate that EED overexpression directly leads to higher H3K27me3 levels, a repressive histone modification that is mediated by the PRC2 complex. Quantitative analysis of H3K27me3 levels by FPLC-based ELISA revealed elevated levels in primary blood cells from adults. Besides quantitative changes, gene ontology analysis of the genome-wide H3K27me3 distribution revealed qualitative changes in adult HSPCs with elevated levels in genes associated with nonhematopoietic development pathways. In contrast, H3K4me3 which labels active chromatin was enriched on hematopoietic genes. In vitro differentiation of EED-transfected neonatal HSPCs revealed aberrant expression of the myelopoietic marker CD14, suggesting that EED affects the lymphoid versus myeloid decision processes within the lymphomyeloid lineage. This is in line with LM progenitors having the most pronounced differences in EED expression. Highlighting the dynamic roles of epigenetic modifications in human hematopoiesis, the present data demonstrate shifts in the PRC2-associated histone modification H3K27me3 from birth to adulthood.


Subject(s)
Cell Lineage/genetics , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Histones/genetics , Histones/metabolism , Human Embryonic Stem Cells/cytology , Polycomb Repressive Complex 2/metabolism , Cell Line , Epigenesis, Genetic/genetics , Humans , Infant, Newborn , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...