Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 132(19): 194902, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20499987

ABSTRACT

The apparent analogy between the self-diffusion of linear oligomers in monodisperse systems, 2 up to 32 monomers, and their tracer diffusion in an entangled polymer matrix of length 256 is investigated by molecular dynamics simulations at constant pressure. Oligomers and polymers are represented by the same coarse-grained (bead-spring) model. An analysis based on the Rouse model is presented. The scaling relationship of the self-diffusion coefficient D with the chain length N written as D proportional, variantN(-alpha) is analyzed for a wide range of temperatures down to the glass transition temperature T(g). Near T(g), the heterogeneous dynamics is explored by the self-part of the van Hove distribution function and various non-Gaussian parameters. For the self-diffusion in a monodisperse system a scaling exponent alpha(T)>1 depending on temperature is found, whereas for the tracer diffusion in an entangled matrix alpha=1 is obtained at all temperatures, regardless of the oligomer length. The different scaling behavior between both systems is explained by a different monomer mobility, which depends on chain length for monodisperse systems, but is constant for all tracers in the polymer matrix.


Subject(s)
Molecular Dynamics Simulation , Polymers/chemistry , Diffusion , Pressure , Temperature
2.
Article in English | MEDLINE | ID: mdl-19938329

ABSTRACT

Testing the specific migration limits of all substances intentionally added to polymer material according to European Union (EU) regulation is a time-consuming and expensive task. Although mathematical modeling offers an interesting alternative, it can significantly overestimate the migration in situations which are strongly conservative due to significant uncertainty in transport properties. In addition, its application is of little use for end-users or enforcement laboratories, which do not have access to the formulation. This paper revises the paradigm of migration modeling by combining modeling with deformulation experiments and iterative modeling in the framework of decision theory. The complete approach is illustrated for polyolefins in contact with 50% ethanol for eight typical migrants, including hindered phenolic antioxidants and low molecular weight surrogates. Results from a French ACTIA project on the identification of formulation fingerprints and on the prediction of partition coefficients with alcoholic and aqueous stimulants is described. When the true migration was close but still lower than the limit of concern, the proposed compact decision tree, including up to four sources of uncertainty, showed that the chance of demonstrating compliance was about 3 : 4 in the presence of one source of uncertainty, whereas it fell below 2 : 4 and 1 : 4 with two and three sources of uncertainty, respectively. The recommendations for further food packaging safety surveys and future developments are discussed.


Subject(s)
Food Contamination/analysis , Food Packaging/standards , Plastics/chemistry , Consumer Product Safety , Decision Trees , Diffusion , Humans , Models, Chemical , Risk Assessment/methods
3.
Food Addit Contam ; 24(11): 1306-17, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17852385

ABSTRACT

The sorption of 14 aroma compounds into PET and PVC was monitored during storage of a strawberry syrup for 1 year. Concentrations in the syrup and in the polymer were determined during storage and compared with previously published results obtained with glass bottles. Apparent partition coefficients between the polymer and the syrup (noted K app) were estimated from experimental kinetics without reaching equilibrium K app values and optimally identified from the kinetic data obtained between 30 and 90 days. They exhibited a similar behaviour for both polymers with values were between 2 x 10(-5) and 2 x 10(-3), 4 x 10(-5) and 3 x 10(-2), respectively, for PET and PVC. The variation of K app values in PET was mainly correlated to the polarity of tested compounds as assessed by their log P values. By contrast, the variations in K app values for PVC were mainly related to their chain lengths. Due to slightly higher partition coefficients and diffusion coefficients in PVC compared with PET, the amount of absorbed aroma was four times higher in PVC than in PET; however, the amount of absorbed aroma compounds was less than 0.1% of the initial amount present into the syrup, except for octyl butanoate. The variation in concentration in the syrup was interpreted as a combination of a degradation process and a transport process into the packaging material. Both effects were particularly noticeable for both PET and unstable aroma compounds.


Subject(s)
Beverages/analysis , Flavoring Agents/chemistry , Food Packaging/methods , Fragaria , Polyethylene Terephthalates/chemistry , Polyvinyl Chloride/chemistry , Absorption , Flavoring Agents/analysis , Food Preservation/methods , Odorants/analysis
4.
Food Addit Contam ; 23(10): 1038-52, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16982526

ABSTRACT

Functional barriers form parts of multi-layer packaging materials, which are deemed to protect the food from migration of a broad range of contaminants, e.g. those associated with reused packaging. Often, neither the presence nor the identity of the contaminants is known, so that safety assessment of the materials has to rely on predictive tools. Several complementary freeware described here allow one to model diffusion in multi-layer films. These tools require the input of parameters that are not easy to determine or predict. Previous work has focused on the prediction of diffusion coefficients at storage temperatures of packaging in contact with food. However, many other kinetic and thermodynamic parameters are needed to describe transport properties during the processing of a material at high temperature and during its shelf-life. All parameters needed for the calculations are discussed. In order to propose default values, the approach consists of (1) reviewing the available literature data, (2) running experiments on polypropylene, polyethylene and poly(ethylene vinyl alcohol) in typical conditions (separately diffusion during processing and migration) and (3) simulating numerical sets for typical situations. Several freeware are proposed to simulate migration from multi-layers and functional barriers using the default parameters.


Subject(s)
Food Contamination/analysis , Food Packaging , Models, Chemical , Computer Simulation , Conservation of Natural Resources , Diffusion , Safety Management/methods , Software , Temperature
5.
Food Addit Contam ; 22(10): 956-67, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16227179

ABSTRACT

Functional barriers are multilayer structures deemed to prevent migration of some chemicals released by food-contact materials into food. In the area of plastics packaging, different migration behaviours of mono- and multilayer structures are assessed in terms of lag time and of their influence of the solubility of the migrants in food simulants. Whereas barriers to oxygen or to aromas must prevent the diffusion of these compounds under conditions of use, a functional barrier must also be efficient under processing conditions, to prevent diffusion of substances when the polymer layers are in contact at high (processing) temperatures. Diffusion in melted polymers at high temperatures is much slower for glassy polymers, than in polymers that are rubbery at ambient temperature. To evaluate the behaviour of functional barriers under conditions of use, a set of reference diffusion coefficients in the 40-60 degrees C range were determined for 14 polymers. Conditions for accelerated migration tests are proposed based on worst-case activation energy in the 40-60 degrees C range. For simulation of migration, numerical models are available. The rules derived from the models can be used both by industry (to optimize a material in terms of migration) or by risk assessors. Differences in migration behaviour between mono- and multilayer materials are discussed.


Subject(s)
Food Contamination , Food Packaging , Polymers , Alkanes/analysis , Chlorobenzenes/analysis , Dibutyl Phthalate/analysis , Dimethyl Sulfoxide/analysis , Environmental Exposure/adverse effects , Equipment Design , Humans , Molecular Weight , Polypropylenes , Solubility , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...