Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 8(6)2018 Jun 16.
Article in English | MEDLINE | ID: mdl-29914155

ABSTRACT

In this study, we report the use of Al2O3 nanoparticles in combination with fluorine doped tin oxide (F:SnO2, aka FTO) thin films to form hazy Al2O3-FTO nanocomposites. In comparison to previously reported FTO-based nanocomposites integrating ZnO and sulfur doped TiO2 (S:TiO2) nanoparticles (i.e., ZnO-FTO and S:TiO2-FTO nanocomposites), the newly developed Al2O3-FTO nanocomposites show medium haze factor HT of about 30%, while they exhibit the least loss in total transmittance Ttot. In addition, Al2O3-FTO nanocomposites present a low fraction of large-sized nanoparticle agglomerates with equivalent radius req > 1 μm; effectively 90% of the nanoparticle agglomerates show req < 750 nm. The smaller feature size in Al2O3-FTO nanocomposites, as compared to ZnO-FTO and S:TiO2-FTO nanocomposites, makes them more suitable for applications that are sensitive to roughness and large-sized features. With the help of a simple optical model developed in this work, we have simulated the optical scattering by a single nanoparticle agglomerate characterized by bottom radius r0, top radius r1, and height h. It is found that r0 is the main factor affecting the HT(λ), which indicates that the haze factor of Al2O3-FTO and related FTO nanocomposites is mainly determined by the total surface coverage of all the nanoparticle agglomerates present.

2.
ACS Nano ; 11(5): 5031-5040, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28471649

ABSTRACT

Controlling plasmonic systems with nanometer resolution in transparent films and their colors over large nonplanar areas is a key issue for spreading their use in various industrial fields. Using light to direct self-organization mechanisms provides high-speed and flexible processes to meet this challenge. Here, we describe a route for the laser-induced self-organization of metallic nanostructures in 3D. Going beyond the production of planar nanopatterns, we demonstrate that ultrafast laser-induced excitation combined with nonlinear feedback mechanisms in a nanocomposite thin film can lead to 3D self-organized nanostructured films. The process, which can be extended to complex layered composite systems, produces highly uniform large-area nanopatterns. We show that 3D self-organization originates from the simultaneous excitation of independent optical modes at different depths in the film and is activated by the plasmon-induced charge separation and thermally induced NP growth mechanisms. This laser color marking technique enables multiplexed optical image encoding and the generated nanostructured Ag NPs:TiO2 films offer great promise for applications in solar energy harvesting, photocatalysis, or photochromic devices.

3.
Phys Chem Chem Phys ; 18(35): 24600-9, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27539293

ABSTRACT

This paper describes a model to simulate changes in the size distribution of metallic nanoparticles (NPs) in TiO2 films upon continuous wave light excitation. Interrelated laser induced physical and chemical processes initiated directly by photon absorption or by plasmon induced thermal heating are considered. Namely the model takes into account the NP coalescence, Ostwald ripening, the reduction of silver ions and the oxidation of metallic NPs, competitive mechanisms that can lead to counter-intuitive behaviors depending on the exposure conditions. Theoretical predictions are compared successfully to the experimental results deduced from a thorough analysis of scanning transmission electron microscopy (STEM) pictures of Ag:TiO2 films processed with a scanning visible laser beam at different speeds. Ag:TiO2 systems are considered for many applications in solar energy conversion, photocatalysis or secured data printing. Numerical investigations of such a system provide a better understanding of light induced growth and shrinking processes and open up prospects for designing more efficient photocatalytic devices based on metal NP doped TiO2 or for improving the size homogeneity in self-organized metallic NP patterns, for instance.

4.
Opt Express ; 21(24): 29412-24, 2013 Dec 02.
Article in English | MEDLINE | ID: mdl-24514495

ABSTRACT

It has been shown in literature that cross-shaped holes arrays can be made insensitive to polarization at normal incidence, and can even feature good stability for off-normal incidence. In this work we look for the optimal design rules to obtain high spectral stability conditions in the visible for those structures, through a complete review of all geometrical parameters using CMOS-compatible materials. Rigorous Coupled Wave Analysis (RCWA) simulations have been used to identify the most-impacting parameters and to determine typical ranges allowing for the realization of low-color errors image sensors whatever the light incidence. It appears that the two main parameters are the ratio of the arm width to the arm length of the crosses and the distance between crosses, which both have to be low to ensure stable responses of the filters. We demonstrate the results with CIE chromaticity diagrams reporting the responses of a RGB filter designed with the established rules under various illumination conditions.

5.
Opt Express ; 20(24): 26542-7, 2012 Nov 19.
Article in English | MEDLINE | ID: mdl-23187509

ABSTRACT

Miniature optical components at the wavelength scale remain today a theoretically opened challenging problem of great technological interest. Appart from refractive micro-optics, plasmonics have been proposed to realize micro lenses with properly designed planar metallic nano-patterns. We show in this paper that efficient light focusing at the diffraction limit with higher transmission can be obtained with micro-structures much easier to fabricate than nano ones, such as a simple micro-slit studied here as an example. Optical properties are attributed to diffraction and a quantitative excellent agreement between experiment and theory is obtained.


Subject(s)
Lenses , Light , Nanostructures/chemistry , Optical Devices , Scattering, Radiation , Surface Plasmon Resonance/instrumentation , Computer-Aided Design , Equipment Design , Humans
6.
Opt Lett ; 37(14): 2817-9, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22825144

ABSTRACT

A passively Q-switched dual-wavelength solid-state laser is presented. The two wavelengths are emitted by two different crystals in order to avoid gain competition, and the synchronization between the pulses is obtained by external triggering of the saturable absorber. Sum frequency mixing is demonstrated, proving the interest of this source for terahertz generation in the 0.3-0.4 THz range through difference frequency generation.

7.
Opt Express ; 20(14): 15516-21, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22772246

ABSTRACT

We theoretically and experimentally demonstrate that the diffraction of microstructures based on silver nanowires leads to very efficient microfocusing effects. Pairs of parallel nanowires act as ultrasmall cylindrical microlenses with diffraction-limited resolution in the Fresnel region. This is a new diffraction scheme to make micron-sized optical lenses with higher transmittance than plasmonic microlens based on nano-aperture arrays. Calculations based on the scalar Rayleigh-Sommerfeld integral highlights the pure scalar diffractive contribution. Thus, the plasmon contribution is negligible in such micron-sized metallic geometry. We demonstrate that two-dimensional grids of nanowires can be used to fabricate dense arrays of microlenses, i.e. 10000x10000 DPI (dots per inch).

8.
Opt Express ; 19(9): 8267-76, 2011 Apr 25.
Article in English | MEDLINE | ID: mdl-21643076

ABSTRACT

Archimedes micro-screws have been fabricated by three-dimensional two-photon polymerization using a Nd:YAG Q-switched microchip laser at 532nm. Due to their small sizes they can be easily manipulated, and made to rotate using low power optical tweezers. Rotation rates up to 40 Hz are obtained with a laser power of 200 mW, i.e. 0.2 Hz/mW. A photo-driven micropump action in a microfluidic channel is demonstrated with a non-optimized flow rate of 6 pL/min. The optofluidic properties of such type of Archimedes micro-screws are quantitatively described by the conservation of momentum that occurs when the laser photons are reflected on the helical micro-screw surface.


Subject(s)
Microfluidic Analytical Techniques/instrumentation , Optical Tweezers , Equipment Design , Equipment Failure Analysis , Systems Integration
9.
Nanotechnology ; 20(35): 355603, 2009 Sep 02.
Article in English | MEDLINE | ID: mdl-19671982

ABSTRACT

The tremendous development of materials with fine tuning of their composition, shape, size and chemical functionalities at the nanometer scale has opened a wide range of applications, particularly in medicine. Metallic nanoparticles are extremely interesting for such developments. The fundamental study of surface plasmon resonance (SPR) versus the shape/size of a particle is an important challenge. In this field, we propose a synthetic strategy using an original biphasic emulsion process linked to chemo-reduction of gold salt HAuCl(4). This method allows the preparation of new functional nanocapsules. These nanomaterials are fully characterized.

SELECTION OF CITATIONS
SEARCH DETAIL
...