Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Main subject
Publication year range
1.
Nanomaterials (Basel) ; 14(4)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38392717

ABSTRACT

The fabrication of functional nanomaterials and nanotextured surfaces assisted by spatially and temporally confined laser radiation has matured from laboratory-scale methods to application-ready technology during recent decades [...].

2.
Nanomaterials (Basel) ; 13(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37513101

ABSTRACT

Unusual optical properties of laser-ablated metal surfaces arise from the excitation of local plasmon resonances in nano- and microstructures produced by laser-processing and from the mutual interaction of those structures through surface plasmon polariton (SPP) waves. This interaction provides a synergistic effect, which can make the optical properties of the composite nanostructure drastically different from the properties of its elements. At the same time, the prediction and analysis of these properties are hampered by the complexity of the analytical solution to the problem of SPP excitation by surface objects of arbitrary configuration. Such a problem can be reduced to a simpler one if one considers the geometry of a structured surface as a superposition of harmonic Fourier components. Therefore, the analytical solution to the problem of surface plasmon polariton excitation through the scattering of light by a sinusoidally perturbed plasmonic metal/vacuum boundary becomes very important. In this work, we show that this problem can be solved using a well-known method for calculating guided-mode amplitudes in the presence of current sources, which is used widely in the waveguide theory. The calculations are carried out for the simplest 2D cases of (1) a sinusoidal current of finite length and (2) a finite-length sinusoidal corrugation on a plasmonic metal surface illuminated by a normally incident plane wave. The analytical solution is compared with the results of numerical simulations. It is shown that, in the first case, the analytical and numerical solutions agree almost perfectly. In the second case, the analytical solution correctly predicts the optimum height of the corrugation xopt, providing the maximum SPP excitation efficiency. At the same time, the analytical and numerical values of the SPP amplitude agree very well when the corrugation height x turns out to be x≪xopt or x≫xopt (at least up to 3xopt); at x=xopt, the mismatch of those does not exceed 25%. The limitations of the analytical model leading to such a mismatch are discussed. We believe that the presented approach is useful for modeling various phenomena associated with SPP excitation.

3.
Nanomaterials (Basel) ; 12(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35630856

ABSTRACT

Further progress in the modern sensor industry is associated with the widespread application of new solutions and principles from the field of nanooptics and nanophotonics [...].

4.
Nanomaterials (Basel) ; 12(5)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35269329

ABSTRACT

Recently, sensors using surface-enhanced Raman scattering (SERS) detectors combined with superhydrophobic/superhydrophilic analyte concentration systems showed the ability to reach detection limits below the femto-molar level. However, a further increase in the sensitivity of these sensors is limited by the impossibility of the concentration systems to deposit the analyte on an area of less than 0.01 mm2. This article proposes a fundamentally new approach to the analyte enrichment, based on the effect of non-uniform electrostatic field on the evaporating droplet. This approach, combined with the optimized geometry of a superhydrophobic/superhydrophilic concentration system allows more than a six-fold reduction of the deposition area. Potentially, this makes it possible to improve the detection limit of the plasmonic sensors by the same factor, bringing it down to the attomolar level.

5.
Nanomaterials (Basel) ; 11(11)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34835701

ABSTRACT

Since surface plasmon polaritons (SPPs) are surface waves, they cannot be excited by an incident plane wave, because free-space photons do not possess a sufficient in-plane momentum. Phase matching between the incident light and SPP can be achieved using a high-refractive-index prism, grating, or nanoantennas. In this work, we found an expression for the amplitude of SPP excited by an arbitrary 3D current distribution placed near a metal interface. The developed method is based on the well-known technique used in waveguide theory that enables finding the amplitudes of waveguide modes excited by the external currents. It reduces the SPP excitation problem to the summation of the set of emitters. As a particular example, we considered a spherical dipole nanoantenna on a metal substrate illuminated by a normally incident plane wave. The analytical calculations were in good agreement with the full-wave numerical simulations.

6.
Nanomaterials (Basel) ; 10(1)2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31878209

ABSTRACT

We report an easy-to-implement device for surface-enhanced Raman scattering (SERS)-based detection of various analytes dissolved in water droplets at trace concentrations. The device combines an analyte-enrichment system and SERS-active sensor site, both produced via inexpensive and high-performance direct femtosecond (fs)-laser printing. Fabricated on a surface of water-repellent polytetrafluoroethylene substrate as an arrangement of micropillars, the analyte-enrichment system supports evaporating water droplet in the Cassie-Baxter superhydrophobic state, thus ensuring delivery of the dissolved analyte molecules towards the hydrophilic SERS-active site. The efficient pre-concentration of the analyte onto the sensor site based on densely arranged spiky plasmonic nanotextures results in its subsequent label-free identification by means of SERS spectroscopy. Using the proposed device, we demonstrate reliable SERS-based fingerprinting of various analytes, including common organic dyes and medical drugs at ppb concentrations. The proposed device is believed to find applications in various areas, including label-free environmental monitoring, medical diagnostics, and forensics.

7.
Nanomaterials (Basel) ; 9(10)2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31547003

ABSTRACT

We demonstrate a multi-purpose plasmonic sensor based on a nanovoid array fabricated via inexpensive and highly-reproducible direct femtosecond laser patterning of thin glass-supported Au films. The proposed nanovoid array exhibits near-IR surface plasmon (SP) resonances, which can be excited under normal incidence and optimised for specific applications by tailoring the array periodicity, as well as the nanovoid geometric shape. The fabricated SP sensor offers competitive sensitivity of ≈ 1600 nm/RIU at a figure of merit of 12 in bulk refractive index tests, as well as allows for identification of gases and ultra-thin analyte layers, making the sensor particularly useful for common bioassay experiments. Moreover, isolated nanovoids support strong electromagnetic field enhancement at lattice SP resonance wavelength, allowing for label-free molecular identification via surface-enhanced vibration spectroscopy.

8.
Nanoscale ; 10(45): 21414-21424, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30427036

ABSTRACT

Controllable targeted deposition of an analyte dissolved in a liquid drop evaporating on a superhydrophobic surface has recently emerged as a promising concentrator approach with various applications ranging from ultrasensitive bioidentification to DNA molecule sorting. Here, we demonstrate that surface textures with non-uniform wettability fabricated using direct easy-to-implement femtosecond-pulse filament-assisted ablation of polytetrafluoroethylene substrates can be used to concentrate and deposit an analyte at a designated location out of a water droplet. The proposed surface textures contain a central superhydrophilic trap surrounded by superhydrophobic periodically arranged pillars with a hierarchical roughness. By optimizing the arrangement and geometry of the central trap and the surrounding superhydrophobic textures, the analyte dissolved in a 5 µL water drop was fixed onto a 90 × 90 µm2 target. The proposed textures provide a concentration factor of 103, an order of magnitude higher than those for the previously reported surface textures. This promising ultrasensitive versatile platform allows the detection of fingerprints of the deposited analyte via surface-enhanced spectroscopy techniques (Raman scattering or photoluminescence) at an estimated detection threshold better than 10-15 mol L-1.

9.
ACS Appl Mater Interfaces ; 8(37): 24946-55, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27549927

ABSTRACT

Surface-enhanced Raman scattering (SERS) and surface-enhanced photoluminescence (SEPL) are emerging as versatile widespread methods for biological, chemical, and physical characterization in close proximity of nanostructured surfaces of plasmonic materials. Meanwhile, single-step, facile, cheap, and green technologies for large-scale fabrication of efficient SERS or SEPL substrates, routinely demonstrating both broad plasmonic response and high enhancement characteristics, are still missing. In this research, single-pulse spallative micron-size craters in a thick Ag film with their internal nanotexture in the form of nanosized tips are for the first time shown to demonstrate strong polarization-dependent enhancement of SEPL and SERS responses from a nanometer-thick covering Rhodamine 6G layer with average enhancement factors of 40 and 2 × 10(6), respectively. Additionally, the first detailed experimental study is reported for physical processes, underlying the formation mechanisms of ablative nanotextures on such "thick" metal films. Such mechanisms demonstrate a complex "hybrid" fluence-dependent ablation character-appearance of spallative craters, typical for bulk material, at low fluences and formation of upright standing nanotips (frozen nanojets), usually associated with thin-film ablation, in the crater centers at higher fluences. Moreover, special emphasis was made on the possibility to reshape the nanotopography of such spallative craters through multipulse laser-induced merging of their small nanotips into larger ones. The presented approach holds promise to be one of the cheapest and easiest-to-implement ways to mass-fabricate various efficient spallation-nanotextured single-element plasmonic substrates for routine chemo- and biosensing, using MHz-repetition-rate femtosecond fiber laser sources with multiplexed laser-beams.


Subject(s)
Lasers , Biosensing Techniques , Metals , Nanostructures , Spectrum Analysis, Raman , Surface Properties
10.
Opt Express ; 24(17): 18898-906, 2016 Aug 22.
Article in English | MEDLINE | ID: mdl-27557171

ABSTRACT

Pulsed laser nanotexturing of metal films represents an ultra-fast, high-performance and cost-effective processing technology for fabrication of various functional surfaces widely used in plasmonics, biosensing, and photovoltaics. However, this approach usually requires high-NA lenses to focus a laser beam onto a few-micron spot as well as a micropositioning platform to move this spot along the sample surface, which increases the cost of the produced functional surfaces and limits the performance of laser-assisted nanotexturing techniques. In this paper we report on a laser-assisted technology for the fabrication of large-scale nanotextured metal substrates. In our approach, speckle-modulated patterns obtained by passing nanosecond laser pulses through the simplest diffusive object were utilized to cover a thin gold film with closely packed micron-sized structures - nanojets, nanobumps and through holes - previously reported only for single-shot nanoablation with tightly focused laser beams. The presented easy-to-implement technology, being one of the simplest of ever reported, since it requires neither focusing lenses nor micropositioning platforms, was shown to provide a way to pattern millimeter-size areas with the nano-sized jets at an average recording density of 35∙103 nanostructures per square millimeter and an average recording speed of 4.5·103 nanostructures per pulse. The fabricated nanotextured Au substrates were shown to yield spatially uniform surface-enhanced fluorescence signals from the Rhodamine 6G organic dye with an averaged 5.3-fold enhancement factor as compared with non-treated Au surface.

11.
Sci Rep ; 6: 19410, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26776569

ABSTRACT

Simple high-performance, two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique, a thin noble-metal film on a dielectric substrate is irradiated by a single tightly focused nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar(+)) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar(+)-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depend on the laser pulse energy and metal film thickness, while subsequent Ar(+)-ion polishing enables to vary height of the resulting nanostructures. Plasmonic properties of the fabricated nanostructures were characterized by dark-field micro-spectroscopy, Raman and photoluminescence measurements performed on single nanofeatures, as well as by supporting numerical calculations of the related electromagnetic near-fields and Purcell factors. The developed simple two-stage technique represents a new step towards direct large-scale laser-induced fabrication of highly ordered arrays of complex plasmonic nanostructures.

12.
Opt Express ; 22(16): 19149-55, 2014 Aug 11.
Article in English | MEDLINE | ID: mdl-25321001

ABSTRACT

We present a novel optical element - fiber microaxicon (FMA) for laser radiation focusing into a diffraction-limited spot with Bessel-like profile as well as for precision laser nanostructuring of metal film surfaces. Using the developed FMA for single-pulse irradiation of Au/Pd metal films on quartz substrate we have demonstrated the formation of submicron hollow microbumps with a small spike atop as well as hollow spherical nanoparticles. Experimental conditions for controllable and reproducible formation of ordered arrays of such microstructures were defined. The internal structure of the fabricated nanoparticles and nanobumps was experimentally studied using both argon ions polishing and scanning electron microscopy. These methods reveal a porous inner structure of laser-induced nanoparticles and nanobumps, which presumably indicates that a subsurface boiling of the molten metal film is a key mechanism determining the formation process of such structures.

13.
Opt Express ; 22(11): 13146-54, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24921510

ABSTRACT

We demonstrate analytically and numerically that the detection of the spectral response of a single spherical Au nanoantenna allows one to map very small (down to 5·10(-4) RIU) variations of the refractive index of an optically transparent sample. Spectral shift of the dipole local plasmon resonance wavelength of the nanoantenna and the spectral sensitivity of the method developed was estimated by using simple analytical quasi-static model. A pointed scanning probe based on fiber microaxicon with the Au spherical nanoantenna attached to its tip was proposed to realize the RI mapping method. Finite-difference time-domain numerical simulations of the spectral properties of the proposed probe are in good agreement with the theoretical quasi-electrostatic estimations for a radius of the nanoantenna not exceeding the skin depth of Au.

SELECTION OF CITATIONS
SEARCH DETAIL
...