Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 73: 128904, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35868496

ABSTRACT

Chronic hepatitis B (CHB) is a major worldwide public health problem and novel anti-HBV therapies preventing liver disease progression to cirrhosis and hepatocellular carcinoma are urgently needed. Over the last several years, capsid assembly modulators (CAM) have emerged as clinically effective anti-HBV agents which can inhibit HBV replication in CHB patients. As part of a drug discovery program aimed at obtaining novel CAM endowed with high in vitro and in vivo antiviral activity, we identified a novel series of sulfamoylbenzamide (SBA) derivatives. Compound 10, one of the most in vitro potent SBA-derived CAM discovered to date, showed excellent pharmacokinetics in mice suitable for oral dosing. When studied in a transgenic mouse model of hepatic HBV replication, it was considerably more potent than NVR 3-778, the first sulfamoylbenzamide (SBA) CAM that entered clinical trials for CHB, at reducing viral replication in a dose-dependent fashion. We present herein the discovery process, the SAR analysis and the pre-clinical profile of this novel SBA CAM.


Subject(s)
Antiviral Agents , Capsid , Animals , Antiviral Agents/pharmacokinetics , Capsid Proteins , Hepatitis B virus , Mice , Virus Assembly , Virus Replication
2.
Bioorg Med Chem Lett ; 30(12): 127207, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32354566

ABSTRACT

A previous publication from our laboratory reported the identification of a new class of 2-(1H-imidazo-2-yl)piperazines as potent T. brucei growth inhibitors as potential treatment for Human African Trypanosomiasis (HAT). This work describes the structure-activity relationship (SAR) around the hit compound 1, which led to the identification of the optimized compound 18, a single digit nanomolar inhibitor (EC50 7 nM), not cytotoxic and with optimal in vivo profile that made it a suitable candidate for efficacy studies in a mouse model mimicking the second stage of disease.


Subject(s)
Growth Inhibitors/chemistry , Piperazines/chemistry , Trypanocidal Agents/chemistry , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/drug therapy , Cell Survival/drug effects , Drug Evaluation, Preclinical , Growth Inhibitors/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , Isomerism , Morpholines/chemistry , Piperazines/pharmacology , Quinolines/chemistry , Structure-Activity Relationship , Trypanocidal Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...