Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nanoscale Adv ; 4(21): 4542-4553, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36341284

ABSTRACT

RNA interference (RNAi) is a post-translational regulatory mechanism that controls gene expression in plants. This process can be artificially induced by double-stranded RNA (dsRNA) molecules with sequence homology to target mRNAs. Exogenously applied dsRNA on leaves has been shown to silence virulence genes of fungi and viruses, conferring protection to plants. Coupling dsRNA to nanoparticles has been demonstrated to prolong the silencing effect. The ability of exogenous dsRNA to silence endogenous genes in plants is currently under debate, mainly due to the difficulty in delivering dsRNA into plant tissues and organs. Our study aims to develop a method based on the exogenous application of dsRNA on tomato flowers for silencing endogenous genes controlling ovary growth. Two methods of dsRNA delivery into tomato flower buds (i.e., pedicel soaking and injection) were compared to test their efficacy in silencing the tomato Aux/IAA9 (SlIAA9) gene, which encodes for a known repressor of ovary growth. We examined the silencing effect of dsRNA alone and coupled to layered double hydroxide (LDHs) nanoparticles. We found that injection into the pedicel led to the silencing of SlIAA9 and the efficacy of the method was confirmed by choosing a different ovary growth repressor gene (SlAGAMOUS-like 6; SlAGL6). The coupling of dsRNA to LDHs increased the silencing effect in the case of SlIAA9. Silencing of the two repressors caused an increase in ovary size only when flower buds were treated with dsRNA coupled to LDHs. RNA-Seq of small RNAs showed that induction of RNAi was caused by the processing of injected dsRNA. In this work, we demonstrate for the first time that exogenous dsRNA coupled to LDHs can induce post-transcriptional gene silencing in the young tomato ovary by injection into the flower pedicel. This method represents a silencing tool for the study of the molecular changes occurring during the early stages of ovary/fruit growth as a consequence of downregulation of target genes, without the need to produce transgenic plants stably expressing RNAi constructs.

2.
Biotechnol Biofuels ; 14(1): 180, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34517884

ABSTRACT

BACKGROUND: Microalgae are coming to the spotlight due to their potential applications in a wide number of fields ranging from the biofuel to the pharmaceutical sector. However, several factors such as low productivity, expensive harvesting procedures and difficult metabolite extractability limit their full utilization at industrial scale. Similarly to the successful employment of enzymatic arsenals from lignocellulolytic fungi to convert lignocellulose into fermentable sugars for bioethanol production, specific algalytic formulations could be used to improve the extractability of lipids from microalgae to produce biodiesel. Currently, the research areas related to algivorous organisms, algal saprophytes and the enzymes responsible for the hydrolysis of algal cell wall are still little explored. RESULTS: Here, an algal trap method for capturing actively growing microorganisms was successfully used to isolate a filamentous fungus, that was identified by whole-genome sequencing, assembly and annotation as a novel Penicillium sumatraense isolate. The fungus, classified as P. sumatraense AQ67100, was able to assimilate heat-killed Chlorella vulgaris cells by an enzymatic arsenal composed of proteases such as dipeptidyl- and amino-peptidases, ß-1,3-glucanases and glycosidases including α- and ß-glucosidases, ß-glucuronidase, α-mannosidases and ß-galactosidases. The treatment of C. vulgaris with the filtrate from P. sumatraense AQ67100 increased the release of chlorophylls and lipids from the algal cells by 42.6 and 48.9%, respectively. CONCLUSIONS: The improved lipid extractability from C. vulgaris biomass treated with the fungal filtrate highlighted the potential of algal saprophytes in the bioprocessing of microalgae, posing the basis for the sustainable transformation of algal metabolites into biofuel-related compounds.

3.
Benef Microbes ; 12(2): 121-136, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33789555

ABSTRACT

In a previously published double-blind, placebo-controlled study, we showed that probiotics intake exerted a positive effect on sleep quality and a general improvement across time in different aspects of the profile of mood state, like sadness, anger, and fatigue in 33 healthy individuals. The present work investigates the impact of the probiotic product, constituted of Limosilactobacillus fermentum LF16, Lacticaseibacillus rhamnosus LR06, Lactiplantibacillus plantarum LP01 (all former members of Lactobacillus genus), and Bifidobacterium longum 04, on the gut microbiota composition of the same cohort through a metabarcoding analysis. Both the placebo and probiotic treatments had a significant impact on the microbiota composition. Statistical analysis showed that the microbiota of the individuals could be clustered into three groups, or bacteriotypes, at the baseline, and, inherently, bacterial compositions were linked to different responses to probiotic and placebo intakes. Interestingly, L. rhamnosus and L. fermentum were retrieved in the probiotic-treated cohort, while a bifidogenic effect of maltodextrin, used as placebo, was observed. The present study shed light on the importance of defining bacteriotypes to assess the impact of interventions on the gut microbiota and allowed to reveal microbial components which could be related to positive effects (i.e. sleep quality improvement) to be verified in further studies.


Subject(s)
Bacteria/isolation & purification , Gastrointestinal Microbiome , Polysaccharides/metabolism , Probiotics/metabolism , Adult , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Cohort Studies , Feces/microbiology , Female , Humans , Young Adult
4.
Sci Rep ; 8(1): 6465, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29691462

ABSTRACT

In this work, we investigated the molecular basis of autotrophic vs. mixotrophic growth of Chlorella sorokiniana, one of the most productive microalgae species with high potential to produce biofuels, food and high value compounds. To increase biomass accumulation, photosynthetic microalgae are commonly cultivated in mixotrophic conditions, adding reduced carbon sources to the growth media. In the case of C. sorokiniana, the presence of acetate enhanced biomass, proteins, lipids and starch productivity when compared to autotrophic conditions. Despite decreased chlorophyll content, photosynthetic properties were essentially unaffected while differential gene expression profile revealed transcriptional regulation of several genes mainly involved in control of carbon flux. Interestingly, acetate assimilation caused upregulation of phosphoenolpyruvate carboxylase enzyme, enabling potential recovery of carbon atoms lost by acetate oxidation. The obtained results allowed to associate the increased productivity observed in mixotrophy in C. sorokiniana with a different gene regulation leading to a fine regulation of cell metabolism.


Subject(s)
Chlorella/growth & development , Chlorella/metabolism , Autotrophic Processes/physiology , Biofuels , Biomass , Carbon/metabolism , Carbon Cycle , Chlorophyll/metabolism , Glucose/metabolism , Lipids/biosynthesis , Microalgae/metabolism , Nitrogen/metabolism , Photosynthesis
5.
Anim Genet ; 41 Suppl 2: 23-7, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21070272

ABSTRACT

A large proportion of mammalian genomes is represented by transposable elements (TE), most of them being long interspersed nuclear elements 1 (LINE-1 or L1). An increased expression of LINE-1 elements may play an important role in cellular stress-related conditions exerting drastic effects on the mammalian transcriptome. To understand the impact of TE on the known horse transcriptome, we masked the horse EST database, pointing out that the amount is consistent with other major vertebrates. A previously developed transcript-derived fragments (TDFs) dataset, deriving from exercise-stimulated horse peripheral blood mononuclear cells (PBMCs), was found to be enriched with L1 (26.8% in terms of bp). We investigated the involvement of TDFs in exercise-induced stress through bioinformatics and gene expression analysis. Results indicate that LINE-derived sequences are not only highly but also differentially expressed during physical effort, hinting at interesting scenarios in the regulation of gene expression in relation to exercise.


Subject(s)
Horses/genetics , Long Interspersed Nucleotide Elements , Physical Conditioning, Animal , Animals , Leukocytes, Mononuclear/metabolism
6.
Science ; 307(5714): 1459-61, 2005 Mar 04.
Article in English | MEDLINE | ID: mdl-15746425

ABSTRACT

Deep-sea life requires adaptation to high pressure, an extreme yet common condition given that oceans cover 70% of Earth's surface and have an average depth of 3800 meters. Survival at such depths requires specific adaptation but, compared with other extreme conditions, high pressure has received little attention. Recently, Photobacterium profundum strain SS9 has been adopted as a model for piezophily. Here we report its genome sequence (6.4 megabase pairs) and transcriptome analysis. The results provide a first glimpse into the molecular basis for life in the largest portion of the biosphere, revealing high metabolic versatility.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Bacterial , Genome, Bacterial , Hydrostatic Pressure , Photobacterium/genetics , Photobacterium/physiology , Sequence Analysis, DNA , Adaptation, Physiological , Amino Acid Transport Systems/genetics , Atmospheric Pressure , Carbohydrate Metabolism , Chromosomes, Bacterial , Genes, Bacterial , Geologic Sediments/microbiology , Oligonucleotide Array Sequence Analysis , Open Reading Frames , Polysaccharides/metabolism , Seawater , Transcription, Genetic , rRNA Operon
SELECTION OF CITATIONS
SEARCH DETAIL
...