Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurol Neurosurg Psychiatry ; 95(5): 419-425, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-37989566

ABSTRACT

BACKGROUND: We investigated the association between changes in retinal thickness and cognition in people with MS (PwMS), exploring the predictive value of optical coherence tomography (OCT) markers of neuroaxonal damage for global cognitive decline at different periods of disease. METHOD: We quantified the peripapillary retinal nerve fibre (pRFNL) and ganglion cell-inner plexiform (GCIPL) layers thicknesses of 207 PwMS and performed neuropsychological evaluations. The cohort was divided based on disease duration (≤5 years or >5 years). We studied associations between changes in OCT and cognition over time, and assessed the risk of cognitive decline of a pRFNL≤88 µm or GCIPL≤77 µm and its predictive value. RESULTS: Changes in pRFNL and GCIPL thickness over 3.2 years were associated with evolution of cognitive scores, in the entire cohort and in patients with more than 5 years of disease (p<0.01). Changes in cognition were related to less use of disease-modifying drugs, but not OCT metrics in PwMS within 5 years of onset. A pRFNL≤88 µm was associated with earlier cognitive disability (3.7 vs 9.9 years) and higher risk of cognitive deterioration (HR=1.64, p=0.022). A GCIPL≤77 µm was not associated with a higher risk of cognitive decline, but a trend was observed at ≤91.5 µm in PwMS with longer disease (HR=1.81, p=0.061). CONCLUSIONS: The progressive retinal thinning is related to cognitive decline, indicating that cognitive dysfunction is a late manifestation of accumulated neuroaxonal damage. Quantifying the pRFNL aids in identifying individuals at risk of cognitive dysfunction.


Subject(s)
Cognitive Dysfunction , Multiple Sclerosis , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Retinal Ganglion Cells/pathology , Retina/pathology , Tomography, Optical Coherence/methods , Cognitive Dysfunction/complications , Atrophy/pathology
2.
J Neurol Neurosurg Psychiatry ; 94(11): 916-923, 2023 11.
Article in English | MEDLINE | ID: mdl-37321841

ABSTRACT

BACKGROUND: We aimed to describe the severity of the changes in brain diffusion-based connectivity as multiple sclerosis (MS) progresses and the microstructural characteristics of these networks that are associated with distinct MS phenotypes. METHODS: Clinical information and brain MRIs were collected from 221 healthy individuals and 823 people with MS at 8 MAGNIMS centres. The patients were divided into four clinical phenotypes: clinically isolated syndrome, relapsing-remitting, secondary progressive and primary progressive. Advanced tractography methods were used to obtain connectivity matrices. Then, differences in whole-brain and nodal graph-derived measures, and in the fractional anisotropy of connections between groups were analysed. Support vector machine algorithms were used to classify groups. RESULTS: Clinically isolated syndrome and relapsing-remitting patients shared similar network changes relative to controls. However, most global and local network properties differed in secondary progressive patients compared with the other groups, with lower fractional anisotropy in most connections. Primary progressive participants had fewer differences in global and local graph measures compared with clinically isolated syndrome and relapsing-remitting patients, and reductions in fractional anisotropy were only evident for a few connections. The accuracy of support vector machine to discriminate patients from healthy controls based on connection was 81%, and ranged between 64% and 74% in distinguishing among the clinical phenotypes. CONCLUSIONS: In conclusion, brain connectivity is disrupted in MS and has differential patterns according to the phenotype. Secondary progressive is associated with more widespread changes in connectivity. Additionally, classification tasks can distinguish between MS types, with subcortical connections being the most important factor.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging , Brain Mapping/methods , Phenotype , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging
3.
Netw Neurosci ; 6(3): 916-933, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36605412

ABSTRACT

In recent years, research on network analysis applied to MRI data has advanced significantly. However, the majority of the studies are limited to single networks obtained from resting-state fMRI, diffusion MRI, or gray matter probability maps derived from T1 images. Although a limited number of previous studies have combined two of these networks, none have introduced a framework to combine morphological, structural, and functional brain connectivity networks. The aim of this study was to combine the morphological, structural, and functional information, thus defining a new multilayer network perspective. This has proved advantageous when jointly analyzing multiple types of relational data from the same objects simultaneously using graph- mining techniques. The main contribution of this research is the design, development, and validation of a framework that merges these three layers of information into one multilayer network that links and relates the integrity of white matter connections with gray matter probability maps and resting-state fMRI. To validate our framework, several metrics from graph theory are expanded and adapted to our specific domain characteristics. This proof of concept was applied to a cohort of people with multiple sclerosis, and results show that several brain regions with a synchronized connectivity deterioration could be identified.

SELECTION OF CITATIONS
SEARCH DETAIL
...