Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 71(1): 129-141.e8, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29979962

ABSTRACT

The enhancer regions of the myogenic master regulator MyoD give rise to at least two enhancer RNAs. Core enhancer eRNA (CEeRNA) regulates transcription of the adjacent MyoD gene, whereas DRReRNA affects expression of Myogenin in trans. We found that DRReRNA is recruited at the Myogenin locus, where it colocalizes with Myogenin nascent transcripts. DRReRNA associates with the cohesin complex, and this association correlates with its transactivating properties. Despite being expressed in undifferentiated cells, cohesin is not loaded on Myogenin until the cells start expressing DRReRNA, which is then required for cohesin chromatin recruitment and maintenance. Functionally, depletion of either cohesin or DRReRNA reduces chromatin accessibility, prevents Myogenin activation, and hinders muscle cell differentiation. Thus, DRReRNA ensures spatially appropriate cohesin loading in trans to regulate gene expression.


Subject(s)
Cell Cycle Proteins/biosynthesis , Chromosomal Proteins, Non-Histone/biosynthesis , Enhancer Elements, Genetic , Muscle, Skeletal/metabolism , Myogenin/biosynthesis , RNA, Untranslated/metabolism , Transcription, Genetic , Animals , Cell Cycle Proteins/genetics , Cell Differentiation , Chromatin/genetics , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/genetics , HEK293 Cells , Humans , Mice , Muscle, Skeletal/cytology , MyoD Protein/biosynthesis , MyoD Protein/genetics , Myogenin/genetics , RNA, Untranslated/genetics , Cohesins
3.
Cell Rep ; 17(5): 1369-1382, 2016 10 25.
Article in English | MEDLINE | ID: mdl-27783950

ABSTRACT

The polycomb repressive complex 2 (PRC2) methylates lysine 27 of histone H3 (H3K27) through its catalytic subunit Ezh2. PRC2-mediated di- and tri-methylation (H3K27me2/H3K27me3) have been interchangeably associated with gene repression. However, it remains unclear whether these two degrees of H3K27 methylation have different functions. In this study, we have generated isogenic mouse embryonic stem cells (ESCs) with a modified H3K27me2/H3K27me3 ratio. Our findings document dynamic developmental control in the genomic distribution of H3K27me2 and H3K27me3 at regulatory regions in ESCs. They also reveal that modifying the ratio of H3K27me2 and H3K27me3 is sufficient for the acquisition and repression of defined cell lineage transcriptional programs and phenotypes and influences induction of the ESC ground state.


Subject(s)
Cell Lineage , Histones/metabolism , Lysine/metabolism , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Animals , Cell Differentiation/genetics , Embryoid Bodies/cytology , Embryoid Bodies/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Expression Regulation , Genome , Methylation , Mice , Neurons/cytology , RNA Editing , Regulatory Sequences, Nucleic Acid/genetics , Transcription Activator-Like Effector Nucleases/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...