Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 3164, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35210443

ABSTRACT

Longitudinal movement plays fundamental role in habitat colonization and population establishment of many riverine fish species. Movement patterns of amphidromous fish species at fine-scales that would allow characterizing the direction of movement and factors associated with the establishment of specific life-history strategies (resident or amphidromous) in rivers are still poorly understood. We assess fine-scale longitudinal movement variability patterns of facultative amphidromous fish species Galaxias maculatus in order to unfold its life-history variation and associated recruitment habitats. Specifically, we analyzed multi-elemental composition along core to edge transects in ear-bones (otoliths) of each fish using recursive partitions that divides the transect along signal discontinuities. Fine-scale movement assessment in five free-flowing river systems allowed us to identify movement direction and potential recruitment habitats. As such, resident recruitment of G. maculatus in freshwater (71%) and estuarine (24%) habitats was more frequent than amphidromous recruitment (5%), and was linked to availability of slow-flowing lotic or lentic habitats that produce or retain small-bodied prey consumed by their larvae. We postulate that life-history variation and successful recruitment of facultative amphidromous fish such as G. maculatus in river systems is driven by availability of suitable recruitment habitats and natural hydrologic connectivity that allows fish movement to these habitats.


Subject(s)
Animal Migration , Behavior, Animal , Fishes/physiology , Osmeriformes/physiology , Animals , Ecosystem , Fresh Water , Rivers
2.
J Fish Biol ; 98(1): 33-43, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32964414

ABSTRACT

Movement is a fundamental aspect of fish ecology, and it therefore represents an important trait to monitor for the management and conservation of fish populations. This is especially true for small benthic fish, as they often inhabit part of the catchment where their movement may be restricted by alterations to river connectivity due to human activity. Still, the movement of these small benthic fish remains poorly understood, partly because of their small size and their cryptic nature. This applies to Percilia irwini, an endangered small darter native to the south-central region of Chile. Its habitat has been affected by the presence of large hydroelectric dams and is currently threatened by the construction of several others. In this study, the authors investigated movement patterns of P. irwini from populations inhabiting different parts of the Biobío catchment, with different levels of connectivity due to natural and/or human-induced features. The authors combined chronological clustering with random forest classification to reconstruct lifelong movements from multi-elemental otolith microchemistry transects. The majority of the movements detected occurred in an undisturbed part of the catchment. These were directional upstream movements occurring between capture sites from the lower and the middle reaches of the river, representing a distance of nearly 30 km, a distance much larger than previously thought. Nonetheless, in the part of the catchment where connectivity was affected by human activity, no such movements were identified. This study shows that connectivity alteration could impede naturally occurring movement and further threaten the resilience of populations of P. irwini. Furthermore, the results presented are used to discuss advantages and disadvantages of microchemistry analysis for studying movement of small benthic fish.


Subject(s)
Animal Migration/physiology , Endangered Species , Perciformes/physiology , Rivers , Animals , Chile , Ecosystem , Otolithic Membrane/chemistry
3.
Mol Ecol Resour ; 18(6): 1456-1468, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30129704

ABSTRACT

Freshwater biodiversity provides important ecosystem services and is at the core of water quality monitoring worldwide. To assess freshwater biodiversity, genetic methods such as metabarcoding are increasingly used as they are faster and allow better taxonomic resolution than manual identification methods. Either sampled organisms are used directly for "bulk metabarcoding," or water is filtered and the extracted environmental DNA serves as a proxy for biodiversity via "eDNA metabarcoding." Despite the advantages of both methods, questions remain regarding their comparability and applicability for routine biomonitoring and stressor impact assessment. Therefore, we compared metabarcoding results from bulk and eDNA samples taken from 19 streams spanning a wide gradient of farming intensities in New Zealand. We performed PCR with highly degenerate cytochrome c oxidase I primers and sequenced libraries on an Illumina MiSeq. The inferred community composition differed strongly between the two methods. More taxa were captured by eDNA than bulk-sample metabarcoding (5,819 vs. 1,483), but more of the commonly used invertebrate bioindicator taxa (mayflies, stoneflies and caddisflies) were found in bulk (47) than eDNA samples (37). Catchment-wide and local land use impacts on communities were detected better by eDNA metabarcoding, especially for non-metazoan taxa. Our findings imply that bulk-sample metabarcoding resembles classical freshwater biomonitoring approaches better, as more indicator macroinvertebrate taxa are captured. However, eDNA metabarcoding might be better suited to infer the impact of stressors on stream ecosystems at larger scales, as many new and potentially more informative taxa are registered. We therefore suggest exploring both methods in future assessments of stream biodiversity.


Subject(s)
Aquatic Organisms/genetics , DNA Barcoding, Taxonomic/methods , DNA Primers/genetics , DNA/genetics , Electron Transport Complex IV/genetics , Fresh Water , Metagenomics/methods , Aquatic Organisms/classification , DNA/chemistry , DNA/isolation & purification , New Zealand , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...