Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 11: 1289, 2020.
Article in English | MEDLINE | ID: mdl-32973848

ABSTRACT

Climate change is expected to intensify water restriction to crops, impacting on the yield potential of crops such as popcorn. This work aimed to evaluate the performance of 10 field cultivated popcorn inbred lines during two growing seasons, under well-watered (WW) and water stressed (WS) (ψsoil≥ -1.5 MPa) conditions. Water stress was applied by withholding irrigation in the phenological phase of male pre-anthesis. Additionally, two contrasting inbred lines, P7 (superior line) and L75 (low performer) were compared for grain yield (GY) and expanded popcorn volume (EPV), selected from previous studies, were tested under greenhouse conditions. In the field, no genotype x water condition x crop season (G×WC×CS) interaction was observed, whereas GY (-51%), EPV (-55%) and leaf greenness (SPAD index) measured 17 days after anthesis (DAA) (> -10%) were highly affected by water limitation. In general, root traits (angles, number, and density) presented G×WC×CS interaction, which did not support their use as selection parameters. In relation to leaf senescence, for both WS and WW conditions, the superior inbred lines maintained a stay-green condition (higher SPAD index) until physiological maturity, but maximum SPAD index values were observed later in WW (48.7 by 14 DAA) than in WS (43.9 by 7 DAA). Under both water conditions, negative associations were observed between SPAD index values 15 and 8 days before anthesis DBA), and GY and EPV (r ≥ -0.69), as well as between SPAD index 7, 17, and 22 DAA, and angles of brace root (AB), number of crown roots (NC) and crown root density (CD), in WS (r ≥ -0.69), and AB and CD, in WW (r ≥ -0.70). Lower NC and CD values may allow further root deepening in WS conditions. Under WS P7 maintained higher net photosynthesis values, stomatal conductance, and transpiration, than L75. Additionally, L75 exhibited a lower (i.e., more negative) carbon isotope composition value than P7 under WS, confirming a lower stomatal aperture in L75. In summary, besides leaf greenness, traits related to leaf photosynthetic status, and stomatal conductance were shown to be good indicators of the agronomic performance of popcorn under water constraint.

2.
PLoS One ; 14(9): e0222726, 2019.
Article in English | MEDLINE | ID: mdl-31557221

ABSTRACT

The objective of this study was to evaluate the effects of additive and non-additive genes on the efficiency of nitrogen (N) use and N responsiveness in inbred popcorn lines. The parents, hybrids and reciprocal crosses were evaluated in a 10x10 triple lattice design at two sites and two levels of N availability. To establish different N levels in the two experiments, fertilization was carried out at sowing, according to soil analysis reports. However, for the experiments with ideal nitrogen availability, N was sidedressed according to the crop requirement, whereas for the N-poor experiments sidedressing consisted of 30% of that applied in the N-rich environment. Two indices were evaluated, the Harmonic Mean of the Relative Performance (HMRP) and Agronomic Efficiency under Low Nitrogen Availability (AELN), both based on grain yield at both N levels. Both additive and non-additive gene effects were important for selection for N-use efficiency. Moreover, there was allelic complementarity between the lines and a reciprocal effect for N-use efficiency, indicating the importance of the choice of the parents used as male or female. The best hybrids were obtained from inbred popcorn lines with contrasting N-use efficiency and N responsiveness.


Subject(s)
Edible Grain/genetics , Nitrogen/metabolism , Plant Breeding , Zea mays/genetics , Alleles , Edible Grain/metabolism , Soil/chemistry , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...