Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 125(11): 117201, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32976012

ABSTRACT

In the quest to image the three-dimensional magnetization structure we show that the technique of magnetic small-angle neutron scattering (SANS) is highly sensitive to the details of the internal spin structure of nanoparticles. By combining SANS with numerical micromagnetic computations we study the transition from single-domain to multidomain behavior in nanoparticles and its implications for the ensuing magnetic SANS cross section. Above the critical single-domain size we find that the cross section and the related correlation function cannot be described anymore with the uniform particle model, resulting, e.g., in deviations from the well-known Guinier law. In the simulations we identify a clear signature for the occurrence of a vortexlike spin structure at remanence. The micromagnetic approach to magnetic SANS bears great potential for future investigations, since it provides fundamental insights into the mesoscale magnetization profile of nanoparticles.

2.
Sci Rep ; 8(1): 7089, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29712951

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

3.
Sci Rep ; 7(1): 13060, 2017 10 12.
Article in English | MEDLINE | ID: mdl-29026160

ABSTRACT

Magnetic small-angle neutron scattering (SANS) is a powerful technique for investigating magnetic nanoparticle assemblies in nonmagnetic matrices. For such microstructures, the standard theory of magnetic SANS assumes uniformly magnetized nanoparticles (macrospin model). However, there exist many experimental and theoretical studies which suggest that this assumption is violated: deviations from ellipsoidal particle shape, crystalline defects, or the interplay between various magnetic interactions (exchange, magnetic anisotropy, magnetostatics, external field) may lead to nonuniform spin structures. Therefore, a theoretical framework of magnetic SANS of nanoparticles needs to be developed. Here, we report numerical micromagnetic simulations of the static spin structure and related unpolarized magnetic SANS of a single cobalt nanorod. While in the saturated state the magnetic SANS cross section is (as expected) determined by the particle form factor, significant deviations appear for nonsaturated states; specifically, at remanence, domain-wall and vortex states emerge which result in a magnetic SANS signal that is composed of all three magnetization Fourier components, giving rise to a complex angular anisotropy on a two-dimensional detector. The strength of the micromagnetic simulation methodology is the possibility to decompose the cross section into the individual Fourier components, which allows one to draw important conclusions regarding the fundamentals of magnetic SANS.

4.
Sci Rep ; 6: 23844, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-27030143

ABSTRACT

Magnetic vortex-based media have recently been proposed for several applications of nanotechnology; however, because lithography is typically used for their preparation, their low-cost, large-scale fabrication is a challenge. One solution may be to use arrays of densely packed cobalt nanowires that have been efficiently fabricated by electrodeposition. In this work, we present this type of nanoscale magnetic structures that can hold multiple stable magnetic vortex domains at remanence with different chiralities. The stable vortex state is observed in arrays of monocrystalline cobalt nanowires with diameters as small as 45 nm and lengths longer than 200 nm with vanishing magnetic cross talk between closely packed neighboring wires in the array. Lorentz microscopy, electron holography and magnetic force microscopy, supported by micromagnetic simulations, show that the structure of the vortex state can be adjusted by varying the aspect ratio of the nanowires. The data we present here introduce a route toward the concept of 3-dimensional vortex-based magnetic memories.

SELECTION OF CITATIONS
SEARCH DETAIL
...