Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Microbiol Spectr ; 11(6): e0127523, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37888982

ABSTRACT

IMPORTANCE: Colonization with extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-PE) often precedes infections and is therefore considered as a great threat for public health. Here, we studied the gut microbiome dynamics in eight index patients colonized with ESBL-PE after hospital discharge and the impact of exposure to this index patient on the gut microbiome dynamics of their household contacts. We showed that the microbiome composition from index patients is different from their household contacts upon hospital discharge and that, in some of the index patients, their microbiome composition over time shifted toward the composition of their household contacts. In contrast, household contacts showed a stable microbiome composition over time irrespective of low-level extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-Ec) or extended-spectrum beta-lactamase-producing Klebsiella pneumoniae (ESBL-Kp) gut colonization, suggesting that, in healthy microbiomes, colonization resistance is able to prevent ESBL-PE expansion.


Subject(s)
Gastrointestinal Microbiome , Humans , Patient Discharge , beta-Lactamases , Escherichia coli , Klebsiella pneumoniae , Hospitals , Anti-Bacterial Agents
2.
Microbiol Spectr ; 11(4): e0006323, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37404183

ABSTRACT

The gut microbiome of humans and animals acts as a reservoir of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC). Dogs are known for having a high prevalence of ESBL-EC in their gut microbiota, although their ESBL-EC carrier status often shifts over time. We hypothesized that the gut microbiome composition of dogs is implicated in ESBL-EC colonization status. Therefore, we assessed whether ESBL-EC carriage in dogs is associated with changes in the gut microbiome and resistome. Fecal samples were collected longitudinally from 57 companion dogs in the Netherlands every 2 weeks for a total of 6 weeks (n = 4 samples/dog). Carriage of ESBL-EC was determined through selective culturing and PCR and in line with previous studies, we observed a high prevalence of ESBL-EC carriage in dogs. Using 16s rRNA gene profiling we found significant associations between detected ESBL-EC carriage and an increased abundance of Clostridium sensu stricto 1, Enterococcus, Lactococcus, and the shared genera of Escherichia-Shigella in the dog microbiome. A resistome capture sequencing approach (ResCap) furthermore, revealed associations between detected ESBL-EC carriage and the increased abundance of the antimicrobial resistance genes: cmlA, dfrA, dhfR, floR, and sul3. In summary, our study showed that ESBL-EC carriage is associated with a distinct microbiome and resistome composition. IMPORTANCE The gut microbiome of humans and animals is an important source of multidrug resistant pathogens, including beta-lactamase-producing Escherichia coli (ESBL-EC). In this study, we assessed if the carriage of ESBL-EC in dogs was associated with changes in gut composition of bacteria and antimicrobial resistant genes (ARGs). Therefore, stool samples from 57 dogs were collected every 2 weeks for a total of 6 weeks. Sixty eight percent of the dogs carried ESBL-EC during at least one of the time points analyzed. By investigating the gut microbiome and resistome composition, we observed specific changes at time points when dogs were colonized with ESBL-EC compared to time points whenESBL-EC were not detected. In conclusion, our study highlights the importance to study the microbial diversity in companion animals, as gut colonization of particular antimicrobial resistant bacteria might be an indication of a changed microbial composition that is associated with the selection of particular ARGs.


Subject(s)
Escherichia coli Infections , Gastrointestinal Microbiome , Humans , Dogs , Animals , Escherichia coli Infections/microbiology , Bacterial Proteins/genetics , RNA, Ribosomal, 16S/genetics , Escherichia coli/genetics , beta-Lactamases/genetics , Bacteria/genetics , Feces/microbiology , Gastrointestinal Microbiome/genetics , Anti-Bacterial Agents/pharmacology
3.
Sci Rep ; 13(1): 3444, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36859567

ABSTRACT

The endometrial microbiota composition may be associated with implantation success. However, a 'core' composition has not yet been defined. This exploratory study analysed the endometrial microbiota by 16S rRNA sequencing (V1-V2 region) of 141 infertile women whose first IVF/ICSI cycle failed and compared the microbiota profiles of women with and without a live birth within 12 months of follow-up, and by infertility cause and type. Lactobacillus was the most abundant genus in the majority of samples. Women with a live birth compared to those without had significantly higher Lactobacillus crispatus relative abundance (RA) (p = 0.029), and a smaller proportion of them had ≤ 10% L. crispatus RA (42.1% and 70.4%, respectively; p = 0.015). A smaller proportion of women in the male factor infertility group had ≤ 10% L. crispatus RA compared to women in the unexplained and other infertility causes groups combined (p = 0.030). Women with primary infertility compared to secondary infertility had significantly higher L. crispatus RA (p = 0.004); lower proportions of them had ≤ 10% L. crispatus RA (p = 0.009) and > 10% Gardnerella vaginalis RA (p = 0.019). In conclusion, IVF/ICSI success may be associated with L. crispatus RA and secondary infertility with endometrial dysbiosis, more often than primary infertility. These hypotheses should be tested in rigorous well-powered longitudinal studies.


Subject(s)
Infertility, Female , Infertility, Male , Microbiota , Humans , Female , Male , Pregnancy , Live Birth , RNA, Ribosomal, 16S , Sperm Injections, Intracytoplasmic
4.
Environ Int ; 169: 107497, 2022 11.
Article in English | MEDLINE | ID: mdl-36088872

ABSTRACT

Air pollution from livestock farms is known to affect respiratory health of patients with chronic obstructive pulmonary disease (COPD). The mechanisms behind this relationship, however, remain poorly understood. We hypothesise that air pollutants could influence respiratory health through modulation of the airway microbiome. Therefore, we studied associations between air pollution exposure and the oropharyngeal microbiota (OPM) composition of COPD patients and controls in a livestock-dense area. Oropharyngeal swabs were collected from 99 community-based (mostly mild) COPD cases and 184 controls (baseline), and after 6 and 12 weeks. Participants were non-smokers or former smokers. Annual average livestock-related outdoor air pollution at the home address was predicted using dispersion modelling. OPM composition was analysed using 16S rRNA-based sequencing in all baseline samples and 6-week and 12-week repeated samples of 20 randomly selected subjects (n = 323 samples). A random selection of negative control swabs, taken every sampling day, were also included in the downstream analysis. Both farm-emitted endotoxin and PM10 levels were associated with increased OPM richness in COPD patients (p < 0.05) but not in controls. COPD case-control status was not associated with community structure, while correcting for known confounders (multivariate PERMANOVA p > 0.05). However, members of the genus Streptococcus were more abundant in COPD patients (Benjamini-Hochberg adjusted p < 0.01). Moderate correlation was found between ordinations of 20 subjects analysed at 0, 6, and 12 weeks (Procrustes r = 0.52 to 0.66; p < 0.05; Principal coordinate analysis of Bray-Curtis dissimilarity), indicating that the OPM is relatively stable over a 12 week period and that a single sample sufficiently represents the OPM. Air pollution from livestock farms is associated with OPM richness of COPD patients, suggesting that the OPM of COPD patients is susceptible to alterations induced by exposure to air pollutants.


Subject(s)
Air Pollutants , Air Pollution , Microbiota , Pulmonary Disease, Chronic Obstructive , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Animals , Endotoxins/analysis , Farms , Humans , Livestock , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics
5.
Sci Rep ; 12(1): 1892, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35115599

ABSTRACT

The human gut microbiome plays a central role in health and disease. Environmental factors, such as lifestyle and diet, are known to shape the gut microbiome as well as the reservoir of resistance genes that these microbes harbour; the resistome. In this study we assessed whether long-term dietary habits within a single geographical region (the Netherlands) impact the human gut resistome. Faecal samples from Dutch omnivores, pescatarians, vegetarians and vegans were analysed by metagenomic shotgun sequencing (MSS) (n = 149) and resistome capture sequencing approach (ResCap) (n = 64). Among all diet groups, 119 and 145 unique antibiotic resistance genes (ARGs) were detected by MSS or ResCap, respectively. Five or fifteen ARGs were shared between all diet groups, based on MSS and ResCap, respectively. The total number of detected ARGs by MSS or ResCap was not significantly different between the groups. MSS also revealed that vegans have a distinct microbiome composition, compared to other diet groups. Vegans had a lower abundance of Streptococcus thermophilus and Lactococcus lactis compared to pescatarians and a lower abundance of S. thermophilus when compared to omnivores. In summary, our study showed that long-term dietary habits are not associated with a specific resistome signature.


Subject(s)
Bacteria/genetics , Diet , Drug Resistance, Bacterial/genetics , Feeding Behavior , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Adult , Bacteria/drug effects , Bacteria/growth & development , Diet, Vegan , Diet, Vegetarian , Feces/microbiology , Female , Humans , Male , Meat , Metagenome , Metagenomics , Middle Aged , Netherlands , Nutritive Value , Seafood , Time Factors , Vegetables
6.
Elife ; 112022 01 06.
Article in English | MEDLINE | ID: mdl-34989676

ABSTRACT

Implant-associated Staphylococcus aureus infections are difficult to treat because of biofilm formation. Bacteria in a biofilm are often insensitive to antibiotics and host immunity. Monoclonal antibodies (mAbs) could provide an alternative approach to improve the diagnosis and potential treatment of biofilm-related infections. Here, we show that mAbs targeting common surface components of S. aureus can recognize clinically relevant biofilm types. The mAbs were also shown to bind a collection of clinical isolates derived from different biofilm-associated infections (endocarditis, prosthetic joint, catheter). We identify two groups of antibodies: one group that uniquely binds S. aureus in biofilm state and one that recognizes S. aureus in both biofilm and planktonic state. Furthermore, we show that a mAb recognizing wall teichoic acid (clone 4497) specifically localizes to a subcutaneously implanted pre-colonized catheter in mice. In conclusion, we demonstrate the capacity of several human mAbs to detect S. aureus biofilms in vitro and in vivo.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Biofilms , Staphylococcus aureus/immunology , Animals , Catheter-Related Infections/immunology , Catheter-Related Infections/microbiology , Catheter-Related Infections/therapy , Humans , Male , Mice , Mice, Inbred BALB C , Staphylococcal Infections/microbiology , Teichoic Acids/immunology , Teichoic Acids/metabolism
7.
Front Immunol ; 11: 1245, 2020.
Article in English | MEDLINE | ID: mdl-32636843

ABSTRACT

Common Variable Immunodeficiency (CVID) and X-linked agammaglobulinemia (XLA) are primary antibody deficiencies characterized by hypogammaglobulinemia and recurrent infections, which can lead to structural airway disease (AD) and interstitial lung disease (ILD). We investigated associations between serum IgA, oropharyngeal microbiota composition and severity of lung disease in these patients. In this cross-sectional multicentre study we analyzed oropharyngeal microbiota composition of 86 CVID patients, 12 XLA patients and 49 healthy controls (HC) using next-generation sequencing of the 16S rRNA gene. qPCR was used to estimate bacterial load. IgA was measured in serum. High resolution CT scans were scored for severity of AD and ILD. Oropharyngeal bacterial load was increased in CVID patients with low IgA (p = 0.013) and XLA (p = 0.029) compared to HC. IgA status was associated with distinct beta (between-sample) diversity (p = 0.039), enrichment of (Allo)prevotella, and more severe radiographic lung disease (p = 0.003), independently of recent antibiotic use. AD scores were positively associated with Prevotella, Alloprevotella, and Selenomonas, and ILD scores with Streptococcus and negatively with Rothia. In clinically stable patients with CVID and XLA, radiographic lung disease was associated with IgA deficiency and expansion of distinct oropharyngeal bacterial taxa. Our findings highlight IgA as a potential driver of upper respiratory tract microbiota homeostasis.


Subject(s)
Immunoglobulin A/immunology , Immunologic Deficiency Syndromes/complications , Immunologic Deficiency Syndromes/immunology , Lung Diseases/immunology , Oropharynx/microbiology , Adolescent , Adult , Child , Cross-Sectional Studies , Female , Humans , Immunoglobulin A/blood , Male , Young Adult
8.
BMC Infect Dis ; 20(1): 450, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32591017

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is a global cause of severe respiratory morbidity and mortality in infants. While preventive and therapeutic interventions are being developed, including antivirals, vaccines and monoclonal antibodies, little is known about the global molecular epidemiology of RSV. INFORM is a prospective, multicenter, global clinical study performed by ReSViNET to investigate the worldwide molecular diversity of RSV isolates collected from children less than 5 years of age. METHODS: The INFORM study is performed in 17 countries spanning all inhabited continents and will provide insight into the molecular epidemiology of circulating RSV strains worldwide. Sequencing of > 4000 RSV-positive respiratory samples is planned to detect temporal and geographical molecular patterns on a molecular level over five consecutive years. Additionally, RSV will be cultured from a subset of samples to study the functional implications of specific mutations in the viral genome including viral fitness and susceptibility to different monoclonal antibodies. DISCUSSION: The sequencing and functional results will be used to investigate susceptibility and resistance to novel RSV preventive or therapeutic interventions. Finally, a repository of globally collected RSV strains and a database of RSV sequences will be created.


Subject(s)
Genome, Viral , Molecular Epidemiology/methods , Polymorphism, Genetic , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus, Human/genetics , Antibodies, Monoclonal/therapeutic use , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Child, Preschool , Drug Resistance, Bacterial/genetics , Female , Genotype , Humans , Immunization, Passive , Infant , Infant, Newborn , Male , Prospective Studies , Respiratory Syncytial Virus, Human/immunology , Respiratory Syncytial Virus, Human/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction
9.
Microbiologyopen ; 8(12): e936, 2019 12.
Article in English | MEDLINE | ID: mdl-31568701

ABSTRACT

The aim of this study was to determine whether dietary intervention influenced luminal Ca2+ levels and Enterococcus faecium gut colonization in mice. For this purpose, mice fed semi-synthetic food AIN93 were compared to mice fed AIN93-low calcium (LC). Administration of AIN93-LC resulted in lower luminal Ca2+ levels independent of the presence of E. faecium. Furthermore, E. faecium gut colonization was reduced in mice fed AIN93-LC based on culture, and which was in concordance with a reduction of Enterococcaceae in microbiota analysis. In conclusion, diet intervention might be a strategy for controlling gut colonization of E. faecium, an important opportunistic nosocomial pathogen.


Subject(s)
Animal Feed , Calcium , Dietary Supplements , Enterococcus faecium/physiology , Gastrointestinal Microbiome , Animals , Biodiversity , Calcium/administration & dosage , Feces/microbiology , High-Throughput Nucleotide Sequencing , Mice , RNA, Ribosomal, 16S
10.
Sci Rep ; 9(1): 10979, 2019 07 29.
Article in English | MEDLINE | ID: mdl-31358818

ABSTRACT

Bariatric surgery in morbid obesity, either through sleeve gastrectomy (SG) or Roux-Y gastric bypass (RYGB), leads to sustainable weight loss, improvement of metabolic disorders and changes in intestinal microbiota. Yet, the relationship between changes in gut microbiota, weight loss and surgical procedure remains incompletely understood. We determined temporal changes in microbiota composition in 45 obese patients undergoing crash diet followed by SG (n = 22) or RYGB (n = 23). Intestinal microbiota composition was determined before intervention (baseline, S1), 2 weeks after crash diet (S2), and 1 week (S3), 3 months (S4) and 6 months (S5) after surgery. Relative to S1, the microbial diversity index declined at S2 and S3 (p < 0.05), and gradually returned to baseline levels at S5. Rikenellaceae relative abundance increased and Ruminococcaceae and Streptococcaceae abundance decreased at S2 (p < 0.05). At S3, Bifidobacteriaceae abundance decreased, whereas those of Streptococcaceae and Enterobacteriaceae increased (p < 0.05). Increased weight loss between S3-S5 was not associated with major changes in microbiota composition. No significant differences appeared between both surgical procedures. In conclusion, undergoing a crash diet and bariatric surgery were associated with an immediate but temporary decline in microbial diversity, with immediate and permanent changes in microbiota composition, independent of surgery type.


Subject(s)
Gastrectomy , Gastric Bypass , Gastrointestinal Microbiome , Obesity/diet therapy , Obesity/surgery , Adult , Bariatric Surgery , Female , Gastrectomy/methods , Gastric Bypass/methods , Humans , Male , Middle Aged , Obesity/microbiology , Weight Loss
11.
Nat Biotechnol ; 37(3): 303-313, 2019 03.
Article in English | MEDLINE | ID: mdl-30833775

ABSTRACT

Adult stem cell-derived organoids are three-dimensional epithelial structures that recapitulate fundamental aspects of their organ of origin. We describe conditions for the long-term growth of primary kidney tubular epithelial organoids, or 'tubuloids'. The cultures are established from human and mouse kidney tissue and can be expanded for at least 20 passages (>6 months) while retaining a normal number of chromosomes. In addition, cultures can be established from human urine. Human tubuloids represent proximal as well as distal nephron segments, as evidenced by gene expression, immunofluorescence and tubular functional analyses. We apply tubuloids to model infectious, malignant and hereditary kidney diseases in a personalized fashion. BK virus infection of tubuloids recapitulates in vivo phenomena. Tubuloids are established from Wilms tumors. Kidney tubuloids derived from the urine of a subject with cystic fibrosis allow ex vivo assessment of treatment efficacy. Finally, tubuloids cultured on microfluidic organ-on-a-chip plates adopt a tubular conformation and display active (trans-)epithelial transport function.


Subject(s)
Kidney/cytology , Nephrons/cytology , Organoids/cytology , Precision Medicine , Adult , Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Animals , Cell Culture Techniques/methods , Cell Differentiation/genetics , Humans , Kidney/growth & development , Kidney Diseases , Mice , Nephrons/metabolism , Organoids/metabolism , Urine/cytology
12.
J Clin Virol ; 112: 20-26, 2019 03.
Article in English | MEDLINE | ID: mdl-30708281

ABSTRACT

BACKGROUND: We found amino acid substitutions in the Gglycoprotein of respiratory syncytial virus (RSV) A during the 2016/2017 epidemic in The Netherlands. OBJECTIVES: We evaluated whether these alterations led to increased RSV incidence and disease burden. STUDY DESIGN: We sequenced the gene encoding the G-protein of prospectively collected clinical specimens from secondary care adult patients testing positive for RSV during the 2016/2017 and 2017/2018 epidemic RSV season. We evaluated associations between genetic, clinical and epidemiological data. RESULTS: We included 49 RSV strains. In 2016/2017 28 strains were included, 20 community acquired RSV-A, 5 hospital acquired RSV-A and 3 community acquired RSV-B. In 2017/2018 21 strains were included, 8 community acquired RSV-A and 13 community acquired RSV-B. G-proteins of 10 out of the 20 community acquired 2016/2017 RSV-A strains shared a set of eight novel amino acid substitutions of which seven in mucin-like regions 1 and 2 and one in the heparin binding domain. This genetic variant was no longer detected among 2017/2018 RSV-A strains. Among patients carrying the novel RSV-A strain-type, 30% died. CONCLUSIONS: A set of eight amino acid substitutions was found in 50% of the 2016/2017 community acquired RSV-A G-proteins. This combination of substitutions was globally never observed before. The appearance of this new strain-type coincided with an increased RSV peak in The Netherlands and was associated with higher disease severity. The transient character of this epidemic strain-type suggests rapid clearance of this lineage in our study community.


Subject(s)
Amino Acid Substitution , Genetic Variation , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Viral Fusion Proteins/genetics , Adult , Aged , Epidemics/statistics & numerical data , Female , Genotype , Humans , Male , Middle Aged , Mutation , Netherlands/epidemiology , Phylogeny , RNA, Viral/genetics , Respiratory Syncytial Virus, Human/pathogenicity , Sequence Analysis, DNA
13.
EMBO J ; 38(4)2019 02 15.
Article in English | MEDLINE | ID: mdl-30643021

ABSTRACT

Organoids are self-organizing 3D structures grown from stem cells that recapitulate essential aspects of organ structure and function. Here, we describe a method to establish long-term-expanding human airway organoids from broncho-alveolar resections or lavage material. The pseudostratified airway organoids consist of basal cells, functional multi-ciliated cells, mucus-producing secretory cells, and CC10-secreting club cells. Airway organoids derived from cystic fibrosis (CF) patients allow assessment of CFTR function in an organoid swelling assay. Organoids established from lung cancer resections and metastasis biopsies retain tumor histopathology as well as cancer gene mutations and are amenable to drug screening. Respiratory syncytial virus (RSV) infection recapitulates central disease features, dramatically increases organoid cell motility via the non-structural viral NS2 protein, and preferentially recruits neutrophils upon co-culturing. We conclude that human airway organoids represent versatile models for the in vitro study of hereditary, malignant, and infectious pulmonary disease.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Cystic Fibrosis/pathology , Epithelial Cells/pathology , Organ Culture Techniques/methods , Organoids/pathology , Respiratory Syncytial Virus Infections/pathology , Respiratory System/pathology , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Cells, Cultured , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Disease Models, Animal , Drug Screening Assays, Antitumor , Epithelial Cells/metabolism , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Organoids/metabolism , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/isolation & purification , Respiratory System/metabolism , Xenograft Model Antitumor Assays
14.
Am J Respir Cell Mol Biol ; 58(4): 492-499, 2018 04.
Article in English | MEDLINE | ID: mdl-29141155

ABSTRACT

Severe influenza virus infection can lead to life-threatening pathology through immune-mediated tissue damage. In various experimental models, this damage is dependent on T cells. There is conflicting evidence regarding the role of neutrophils in influenza-mediated pathology. Neutrophils are often regarded as cells causing tissue damage, but, in recent years, it has become clear that a subset of human neutrophils is capable of suppressing T cells, which is dependent on macrophage-1 antigen (CD11b/CD18). Therefore, we tested the hypothesis that immune suppression by neutrophils can reduce T cell-mediated pathology after influenza infection. Wild-type (WT) and CD11b-/- mice were infected with A/HK/2/68 (H3N2) influenza virus. Disease severity was monitored by weight loss, leukocyte infiltration, and immunohistochemistry. We demonstrated that CD11b-/- mice suffered increased weight loss compared with WT animals upon infection with influenza virus. This was accompanied by increased pulmonary leukocyte infiltration and lung damage. The exaggerated pathology in CD11b-/- mice was dependent on T cells, as it was reduced by T cell depletion. In addition, pathology in CD11b-/- mice was accompanied by higher numbers of T cells in the lungs early during infection compared with WT mice. Importantly, these differences in pathology were not associated with an increased viral load, suggesting that pathology was immune-mediated rather than caused by virus-induced damage. In contrast to adoptive transfer of CD11b-/- neutrophils, a single adoptive transfer of WT neutrophils partly restored protection against influenza-induced pathology, demonstrating the importance of neutrophil CD11b/CD18. Our data show that neutrophil CD11b/CD18 limits pathology in influenza-induced, T cell-mediated disease.


Subject(s)
CD11b Antigen/metabolism , CD18 Antigens/metabolism , Influenza A virus/pathogenicity , Lung/metabolism , Macrophage-1 Antigen/metabolism , Neutrophils/metabolism , Orthomyxoviridae Infections/metabolism , Adoptive Transfer , Animals , CD11b Antigen/genetics , CD11b Antigen/immunology , CD18 Antigens/immunology , Chemotaxis, Leukocyte , Disease Models, Animal , Female , Host-Pathogen Interactions , Influenza A virus/immunology , Lung/immunology , Lung/pathology , Lung/virology , Macrophage-1 Antigen/genetics , Macrophage-1 Antigen/immunology , Mice, Inbred C57BL , Mice, Transgenic , Neutrophils/immunology , Neutrophils/transplantation , Neutrophils/virology , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Time Factors , Viral Load , Weight Loss
17.
J Virol Methods ; 213: 75-83, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25500183

ABSTRACT

The rapid identification of existing and emerging respiratory viruses is crucial in combating outbreaks and epidemics. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a rapid and reliable identification method in bacterial diagnostics, but has not been used in virological diagnostics. Mass spectrometry systems have been investigated for the identification of respiratory viruses. However, sample preparation methods were laborious and time-consuming. In this study, a reliable and rapid sample preparation method was developed allowing identification of cultured respiratory viruses. Tenfold serial dilutions of ten cultures influenza A strains, mixed samples of influenza A virus with human metapneumovirus or respiratory syncytial virus, and reconstituted clinical samples were treated with the developed sample preparation method. Subsequently, peptides were subjected to MALDI-TOF MS and liquid chromatography tandem mass spectrometry (LC-MS/MS). The influenza A strains were identified to the subtype level within 3h with MALDI-TOF MS and 6h with LC-MS/MS, excluding the culturing time. The sensitivity of LC-MS/MS was higher compared to MALDI-TOF MS. In addition, LC-MS/MS was able to discriminate between two viruses in mixed samples and was able to identify virus from reconstituted clinical samples. The development of an improved and rapid sample preparation method allowed generic and rapid identification of cultured respiratory viruses by mass spectrometry.


Subject(s)
Mass Spectrometry/methods , Respiratory Tract Infections/diagnosis , Specimen Handling/methods , Virus Diseases/diagnosis , Viruses/classification , Viruses/isolation & purification , Humans , Influenza A virus , Influenza, Human , Metapneumovirus , Respiratory Syncytial Viruses , Respiratory Tract Infections/virology , Sensitivity and Specificity , Time Factors , Virus Diseases/virology , Viruses/chemistry
18.
J Virol ; 87(14): 8213-26, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23698290

ABSTRACT

Genomic variation and related evolutionary dynamics of human respiratory syncytial virus (RSV), a common causative agent of severe lower respiratory tract infections, may affect its transmission behavior. RSV evolutionary patterns are likely to be influenced by a precarious interplay between selection favoring variants with higher replicative fitness and variants that evade host immune responses. Studying RSV genetic variation can reveal both the genes and the individual codons within these genes that are most crucial for RSV survival. In this study, we conducted genetic diversity and evolutionary rate analyses on 36 RSV subgroup B (RSV-B) whole-genome sequences. The attachment protein, G, was the most variable protein; accordingly, the G gene had a higher substitution rate than other RSV-B genes. Overall, less genetic variability was found among the available RSV-B genome sequences than among RSV-A genome sequences in a comparable sample. The mean substitution rates of the two subgroups were, however, similar (for subgroup A, 6.47 × 10(-4) substitutions/site/year [95% credible interval {CI 95%}, 5.56 × 10(-4) to 7.38 × 10(-4)]; for subgroup B, 7.76 × 10(-4) substitutions/site/year [CI 95%, 6.89 × 10(-4) to 8.58 × 10(-4)]), with the time to their most recent common ancestors (TMRCAs) being much lower for RSV-B (19 years) than for RSV-A (46.8 years). The more recent RSV-B TMRCA is apparently the result of a genetic bottleneck that, over longer time scales, is still compatible with neutral population dynamics. Whereas the immunogenic G protein seems to require high substitution rates to ensure immune evasion, strong purifying selection in conserved proteins such as the fusion protein and nucleocapsid protein is likely essential to preserve RSV viability.


Subject(s)
Evolution, Molecular , Genetic Variation/genetics , Genomics/methods , Phylogeny , Respiratory Syncytial Virus, Human/genetics , Amino Acid Sequence , Base Sequence , Bayes Theorem , Immune Evasion/genetics , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Population Dynamics , Selection, Genetic , Sequence Alignment , Sequence Analysis, DNA , Species Specificity , Virus Replication/genetics
19.
Arch Virol ; 158(1): 251-5, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23053517

ABSTRACT

Novel viruses might be responsible for numerous disease cases with unknown etiology. In this study, we screened 1800 nasopharyngeal samples from adult outpatients with respiratory disease symptoms and healthy individuals. We employed a reverse transcription (RT)-PCR assay and CODEHOP-based primers (CT12-mCODEHOP) previously developed to recognize known and unknown corona- and toroviruses. The CT12-mCODEHOP assay detected 42.0 % (29/69) of samples positive for human coronaviruses (HCoV), including HCoV-229 (1/16), HCoV-NL63 (9/17), and HCoV-OC43 (19/36), and additionally HCoV-HKU1 (3), which was not targeted by the diagnostic real-time PCR assays. No other coronaviruses were identified in the analyzed samples.


Subject(s)
Coronavirus/isolation & purification , DNA Primers/genetics , Nasopharynx/virology , Respiratory Tract Infections/virology , Reverse Transcriptase Polymerase Chain Reaction/methods , Coronavirus/classification , Coronavirus/genetics , Humans , Respiratory Tract Infections/diagnosis
20.
PLoS One ; 7(12): e51439, 2012.
Article in English | MEDLINE | ID: mdl-23236501

ABSTRACT

Human respiratory syncytial virus (RSV) is an important cause of severe lower respiratory tract infections in infants and the elderly. In the vast majority of cases, however, RSV infections run mild and symptoms resemble those of a common cold. The immunological, clinical, and epidemiological profile of severe RSV infections suggests a disease caused by a virus with typical seasonal transmission behavior, lacking clear-cut virulence factors, but instead causing disease by modifying the host's immune response in a way that stimulates pathogenesis. Yet, the interplay between RSV-evoked immune responses and epidemic behavior, and how this affects the genomic evolutionary dynamics of the virus, remains poorly understood. Here, we present a comprehensive collection of 33 novel RSV subgroup A genomes from strains sampled over the last decade, and provide the first measurement of RSV-A genomic diversity through time in a phylodynamic framework. In addition, we map amino acid substitutions per protein to determine mutational hotspots in specific domains. Using Bayesian genealogical inference, we estimated the genomic evolutionary rate to be 6.47 × 10(-4) (credible interval: 5.56 × 10(-4), 7.38 × 10(-4)) substitutions/site/year, considerably slower than previous estimates based on G gene sequences only. The G gene is however marked by elevated substitution rates compared to other RSV genes, which can be attributed to relaxed selective constraints. In line with this, site-specific selection analyses identify the G gene as the major target of diversifying selection. Importantly, statistical analysis demonstrates that the immune driven positive selection does not leave a measurable imprint on the genome phylogeny, implying that RSV lineage replacement mainly follows nonselective epidemiological processes. The roughly 50 years of RSV-A genomic evolution are characterized by a constant population size through time and general co-circulation of lineages over many epidemic seasons - a conclusion that might be taken into account when developing future therapeutic and preventive strategies.


Subject(s)
Evolution, Molecular , Genetic Variation/genetics , Genome, Viral/genetics , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus, Human/genetics , Selection, Genetic , Amino Acid Substitution/genetics , Base Sequence , Bayes Theorem , Belgium/epidemiology , Child, Preschool , DNA Primers/genetics , Genomics/methods , Humans , Infant , Infant, Newborn , Models, Genetic , Molecular Sequence Data , Mutation Rate , Netherlands/epidemiology , Real-Time Polymerase Chain Reaction , Respiratory Syncytial Virus Infections/virology , Sequence Analysis, DNA , Viral Envelope Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...