Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 597
Filter
1.
Cureus ; 16(5): e60636, 2024 May.
Article in English | MEDLINE | ID: mdl-38903301

ABSTRACT

INTRODUCTION: The study aims to examine the disparities in mortality rates attributed to brain cancer between urban and rural areas over a 22-year period, totaling 315,538 deaths. This investigation serves as a crucial step in identifying areas within healthcare that require improvement. By pinpointing the variations in mortality rates between urban and rural settings, healthcare authorities can strategically implement necessary interventions. METHODOLOGY: A retrospective study was conducted by analyzing the death certificate available on the Centers for Disease Control and Prevention Wide-Ranging Online Data for Epidemiologic Research (CDC WONDER) database from 1999 to 2020 to evaluate the mortality rate trends of brain cancer ( International Classification of Diseases (ICD)-10 C71.0-71.9).The data was grouped based on rural and urban death rates according to the 2013 urbanization classification and the variables that were used were age, gender and race. Data was analyzed using Microsoft Excel and R Studio 4.3.1. Significant associations between demographic variables and mortality rates were identified via Binomial tests. RESULTS: From 1999 to 2020, urban areas recorded 259,402 deaths attributed to brain cancer, compared to 56,136 deaths in rural areas, indicating a higher mortality rate in urban settings. The mortality rate in both rural and urban areas exhibited an upward trend, except for a slight drop in 2010. The mortality rates were significantly higher in rural areas compared to urban areas for age groups 55-64 years and 65-74 years, males and caucasians. CONCLUSIONS: Our research underscores the differences in death rates from brain cancer between urban and rural areas, specifically among individuals aged 55-64 and 65-74, males and those of caucasian ethnicity. Future research must adopt a multifaceted approach, integrating more recent datasets and embracing a finer granularity of individual-level information. Moreover, there is a pressing need to explore the interplay of various factors such as access to healthcare, treatment modalities, genetic predispositions, and socioeconomic determinants on mortality outcomes.

2.
Clin Orthop Surg ; 16(3): 347-356, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38827766

ABSTRACT

Artificial intelligence (AI) has rapidly transformed various aspects of life, and the launch of the chatbot "ChatGPT" by OpenAI in November 2022 has garnered significant attention and user appreciation. ChatGPT utilizes natural language processing based on a "generative pre-trained transfer" (GPT) model, specifically the transformer architecture, to generate human-like responses to a wide range of questions and topics. Equipped with approximately 57 billion words and 175 billion parameters from online data, ChatGPT has potential applications in medicine and orthopedics. One of its key strengths is its personalized, easy-to-understand, and adaptive response, which allows it to learn continuously through user interaction. This article discusses how AI, especially ChatGPT, presents numerous opportunities in orthopedics, ranging from preoperative planning and surgical techniques to patient education and medical support. Although ChatGPT's user-friendly responses and adaptive capabilities are laudable, its limitations, including biased responses and ethical concerns, necessitate its cautious and responsible use. Surgeons and healthcare providers should leverage the strengths of the ChatGPT while recognizing its current limitations and verifying critical information through independent research and expert opinions. As AI technology continues to evolve, ChatGPT may become a valuable tool in orthopedic education and patient care, leading to improved outcomes and efficiency in healthcare delivery. The integration of AI into orthopedics offers substantial benefits but requires careful consideration and continuous improvement.


Subject(s)
Artificial Intelligence , Orthopedic Procedures , Humans , Natural Language Processing , Patient Care
3.
Biomed Pharmacother ; 176: 116849, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823275

ABSTRACT

Sickle cell disease (SCD) is the most severe monogenic hemoglobinopathy caused by a single genetic mutation that leads to repeated polymerization and depolymerization of hemoglobin resulting in intravascular hemolysis, cell adhesion, vascular occlusion, and ischemia-reperfusion injury. Hemolysis causes oxidative damage indirectly by generating reactive oxygen species through various pathophysiological mechanisms, which include hemoglobin autoxidation, endothelial nitric oxide synthase uncoupling, reduced nitric oxide bioavailability, and elevated levels of asymmetric dimethylarginine. Red blood cells have a built-in anti-oxidant system that includes enzymes like sodium dismutase, catalase, and glutathione peroxidase, along with free radical scavenging molecules, such as vitamin C, vitamin E, and glutathione, which help them to fight oxidative damage. However, these anti-oxidants may not be sufficient to prevent the effects of oxidative stress in SCD patients. Therefore, in line with a recent FDA request that the focus to be placed on the development of innovative therapies for SCD that address the root cause of the disease, there is a need for therapies that target oxidative stress and restore redox balance in SCD patients. This review summarizes the current state of knowledge regarding the role of oxidative stress in SCD and the potential benefits of anti-oxidant therapies. It also discusses the challenges and limitations of these therapies and suggests future directions for research and development.


Subject(s)
Anemia, Sickle Cell , Antioxidants , Oxidative Stress , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/metabolism , Humans , Oxidative Stress/drug effects , Antioxidants/therapeutic use , Antioxidants/pharmacology , Animals , Reactive Oxygen Species/metabolism
4.
Adv Colloid Interface Sci ; 331: 103199, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38909548

ABSTRACT

Recently, the availability of point-of-care sensor systems has led to the rapid development of smart and portable devices for the detection of hazardous analytes. The rapid flow of artificially ripened fruits into the market is associated with an elevated risk to human life, agriculture, and the ecosystem due to the use of artificial fruit ripening agents (AFRAs). Accordingly, there is a need for the development of "Point-of-care Sensors" to detect AFRAs due to several advantages, such as simple operation, promising detection mechanism, higher selectivity and sensitivity, compact, and portable. Traditional detection approaches are time-consuming and inappropriate for on-the-spot analyses. Presented comprehensive review aimed to reveal how such technology has systematically evolved over time (through conventional, advanced, and portable smart techniques) detection detect AFRA, till date. Moreover, focuses and highlights a framework of initiatives undertaken for technological advancements in the development of smart the portable detection techniques (kits) for the onsite detection of AFRAs in fruits with in-depth discussion over sensing mechanism and analytical performance of the sensing technology. Notably, colorimetric detection methods have the greatest potential for real-time monitoring of AFRA and its residues because they are easy to assemble, have a high level of selectivity and sensitivity, and can be read by the human eye independently. This study sought to differentiate between traditional credible strategies by presenting new prospects, perceptions, and challenges related to portable devices. This review provides systematic framework of advances in portable field recognition strategies for the on-spot AFRA detection in fruits and critical information for development of new paper-based portable sensors for fruit diagnostic sectors.

5.
Arch Virol ; 169(7): 145, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864875

ABSTRACT

Since 2020, African swine fever (ASF) has affected all pig breeds in Northeast India except Doom pigs, a unique indigenous breed from Assam and the closest relatives of Indian wild pigs. ASF outbreaks result in significant economic losses for pig farmers in the region. Based on sequencing and phylogenetic analysis of the B646L (p72) gene, it has been determined that ASFV genotype II is responsible for outbreaks in this region. Recent studies have shown that MYD88, LDHB, and IFIT1, which are important genes of the immune system, are involved in the pathogenesis of ASFV. The differential expression patterns of these genes in surviving ASFV-infected and healthy Doom breed pigs were compared to healthy controls at different stages of infection. The ability of Doom pigs to withstand common pig diseases, along with their genetic resemblance to wild pigs, make them ideal candidates for studying tolerance to ASFV infection. In the present study, we investigated the natural resistance to ASF in Doom pigs from an endemic area in Northeast India. The results of this study provide important molecular insights into the regulation of ASFV tolerance genes.


Subject(s)
African Swine Fever Virus , African Swine Fever , Disease Outbreaks , Phylogeny , Animals , African Swine Fever/virology , African Swine Fever/epidemiology , African Swine Fever/immunology , African Swine Fever Virus/genetics , African Swine Fever Virus/immunology , India/epidemiology , Swine , Disease Outbreaks/veterinary , Genotype , Myeloid Differentiation Factor 88/genetics , Disease Resistance/genetics
6.
J Kidney Cancer VHL ; 11(2): 18-26, 2024.
Article in English | MEDLINE | ID: mdl-38799379

ABSTRACT

To analyze and compare the intraoperative and post-operative outcomes of "on-clamp" laparoscopic partial nephrectomy (LPN) with "preoperative super-selective angioembolization" before LPN. This randomized clinical study was conducted at Gauhati Medical College Hospital, Guwahati, India, between November 2021 and November 2023. Adult patients of either gender diagnosed with T1 renal tumors were included in the study. All patients underwent diethylenetriamine pentaacetate scan preoperatively and at 1-month follow-up. The patients were randomized using a parallel group design with an allocation ratio of 1:1 to receive either preoperative angioembolization followed by LPN or conventional "on-clamp" LPN. Demographic and baseline parameters were recorded along with pre- and post-operative data. There was no significant difference between the two groups in terms of age (P = 0.11), gender distribution (P = 0.32), body mass index (P = 0.43), preoperative hemoglobin (P = 0.34), and preoperative estimated glomerular filtration rate (eGFR; P = 0.64). One patient in the embolization group required radical nephrectomy because of accidental backflow of glue into the renal artery during embolization whereas four patients required clamping due to inadequate embolization. Preoperative super-selective embolization yielded significantly less blood loss, compared to "on-clamp" LPN (145 [50.76 mL] vs. 261 [66.12 mL], P < 0.01). There was no significant difference between post-operative eGFR (at 1 month) between the two groups (P = 0.71). Preoperative embolization offers improved outcomes in the dissection plane, total operative time, and blood loss, compared to conventional "on-clamp" LPN but has no significant effect on change in eGFR.

7.
Dig Endosc ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695110

ABSTRACT

Endoscopic ultrasound (EUS) is increasingly used as a therapeutic approach for gastrointestinal diseases, especially with the advent of lumen-apposing metal stents (LAMS). This has led to a rise in of EUS-guided gastrointestinal anastomosis procedures. Due to the reliability of intestinal conduits with LAMS, indications for EUS-guided gastrointestinal anastomosis are becoming more common and trend to potentially be standard care for gastric outlet obstruction, afferent loop syndrome, and EUS-directed transgastric interventions such as EUS-directed endoscopic retrograde cholangiopancreatography. Retrospective and prospective data indicate that the procedure is becoming widely adopted with promising outcomes. This article aims to review the existing literature on EUS-guided gastrointestinal anastomosis and predict its future developments.

8.
Heliyon ; 10(10): e30854, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38807883

ABSTRACT

Warehouse/distribution center (DC) automation technology for the retail industry promises to reduce operational costs, improve flexibility and response time for customers, and help improve network productivity, thus making it very relevant for omni/multichannel (OC/MC) settings. However, the investment required to acquire the DC automation technology is high, and hence, the investment decision must be operationally and financially comprehensive. In fact, an automated DC has a network-wide impact: it can benefit players in the network, but in turn is exposed to network risks and the investment must be safeguarded. While the need for a comprehensive decision-making framework and safeguarding strategy is stressed by scholars, such a framework is lacking. Further, corresponding integrated sub-frameworks for key elements in the OC/MC value chain are also missing. In this paper, we address these gaps and contribute by providing a) generalized and integrated three-part framework, b) corresponding sub-frameworks, c) discrete event, economic, and math programming models, d) rapid-sizing/analysis tools based on: i) analysis at the DC-level, ii) network level, iii) economic/business level, and iv) contract level (sustainable supplier/distribution relationship). In this reference, we investigate a new generation 'full-case' technology that has been recognized as a key to warehouse automation. The insights from our research inform several strategic tradeoffs (extent of automation, investment in labor vs. capital, response vs. efficiency, and sustainable supplier management) relevant for decision-making and safeguarding an expensive asset such as an automated DC. Our analysis is based on interviews (retailers, automated and conventional DCs, and DC equipment suppliers), on-site observations, secondary data, and learning from analytical models. We also present an illustrative real-life application/case study of the framework and the modeling details in the E-component.

9.
Chem Asian J ; : e202400138, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733617

ABSTRACT

The aminotroponiminate (ATI) ligand stabilized germylene cation [(i-Bu)2ATIGe][B(C6F5)4] (2) is found to be an efficient low-valent main-group catalyst for the cyanosilylation of aldehydes and ketones (ATI = aminotroponiminate). It was synthesized by reacting [(i-Bu)2ATIGeCl] (1) with Na[B(C6F5)4]. The catalytic cyanosilylation of diverse aliphatic and aromatic carbonyl compounds (aldehydes and ketones) using 0.075-0.75 mol% of compound 2 was completed within 5-45 min. The catalytic efficiency seen with aliphatic aldehydes was around 15,800 h-1, making compound 2 a capable low-valent main-group catalyst for the aldehyde and ketone cyanosilylation reactions.

10.
Environ Pollut ; 354: 124134, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38734050

ABSTRACT

This review article explores the challenges associated with landfill leachate resulting from the increasing disposal of municipal solid waste in landfills and open areas. The composition of landfill leachate includes antibiotics (0.001-100 µg), heavy metals (0.001-1.4 g/L), dissolved organic and inorganic components, and xenobiotics including polyaromatic hydrocarbons (10-25 µg/L). Conventional treatment methods, such as biological (microbial and phytoremediation) and physicochemical (electrochemical and membrane-based) techniques, are available but face limitations in terms of cost, accuracy, and environmental risks. To surmount these challenges, this study advocates for the integration of artificial intelligence (AI) and machine learning (ML) to strengthen treatment efficacy through predictive analytics and optimized operational parameters. It critically evaluates the risks posed by recalcitrant leachate components and appraises the performance of various treatment modalities, both independently and in tandem with biological and physicochemical processes. Notably, physicochemical treatments have demonstrated pollutant removal rates of up to 90% for various contaminants, while integrated biological approaches have achieved over 95% removal efficiency. However, the heterogeneous nature of solid waste composition further complicates treatment methodologies. Consequently, the integration of advanced ML algorithms such as Support Vector Regression, Artificial Neural Networks, and Genetic Algorithms is proposed to refine leachate treatment processes. This review provides valuable insights for different stakeholders specifically researchers, policymakers and practitioners, seeking to fortify waste disposal infrastructure and foster sustainable landfill leachate management practices. By leveraging AI and ML tools in conjunction with a nuanced understanding of leachate complexities, a promising pathway emerges towards effectively addressing this environmental challenge while mitigating potential adverse impacts.


Subject(s)
Machine Learning , Waste Disposal Facilities , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Refuse Disposal/methods , Biodegradation, Environmental , Solid Waste , Metals, Heavy/analysis , Artificial Intelligence
11.
Ann Med Surg (Lond) ; 86(4): 2067-2080, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38576928

ABSTRACT

Background and objective: Guillain-Barre syndrome (GBS) has been found to have some interesting association with vaccinations. This paper mainly focuses on exploring different associations between COVID-19 vaccination and GBS. Methods: Electronic databases such as PubMed, Google Scholar, Cochrane, and Embase were searched using MESH terms for case reports published till 1 August 2023 from which 70 case reports were documented involving 103 individuals from 23 different countries. Result and discussion: The case reports were from a wide range of individuals aged from 13 to 87 years with an average age of 53±20 interquartile range years along with male predominance. The average time between receiving the vaccine and the onset of symptoms was 13.08±2.14 days. Prominent clinical features included back pain, facial diplegia, weakness, and paraesthesia whereas the main diagnostic studies were cerebrospinal fluid (CSF) analysis and electromagnetic studies. The principal diagnostic clue was albumin-cytological dissociation in CSF while being negative for anti-ganglioside antibodies or SARS-CoV-2. Available treatment options consisted of intravenous immunoglobulin and Plasmapheresis. Patients with comorbidities such as diabetes mellitus, hypertension, dyslipidemia, permanent atrial fibrillation, hypothyroidism, Hashimoto's thyroiditis, Chronic Obstructive Pulmonary Disease, asthma, osteoporosis, migraine, rheumatoid arthritis, osteoarthritis, ulcerative colitis, coeliac disease, seizures, bipolar disorder, endometriosis, multiple sclerosis, bell's palsy, squamous cell carcinoma, prostate cancer were included in our study. Conclusion: Overall, this review evaluated innovative and clinically relevant associations between COVID-19 vaccination and GBS. Understanding of this uncommon potential side effect of COVID-19 vaccination is crucial for prompt diagnosis and appropriate treatment. Importantly, GBS should not be considered a contraindication to vaccination. This underscores the importance of ongoing research to enhance the safety and efficacy of COVID-19 vaccination efforts.

13.
J Vector Borne Dis ; 61(1): 117-122, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38648413

ABSTRACT

BACKGROUND OBJECTIVES: This study reports observation on circulating serotypes and genotypes of Dengue Virus in North India. METHODS: Serum samples were obtained from suspected cases of dengue referred to the virus diagnostic laboratory during 2014 to 2022. All samples were tested for anti-dengue virus IgM antibodies and NS1Ag by ELISA. NS1Ag positive samples were processed for serotyping and genotyping. RESULTS: Total 41,476 dengue suspected cases were referred to the laboratory of which 12,292 (29.6%) tested positive. Anti-Dengue Virus IgM antibodies, NS1Ag, both IgM and NS1Ag, were positive in 7007 (57.4%); 3200 (26.0%) and 2085 (16.0%) cases respectively. Total 762 strains were serotyped during 9-year period. DENV-1, DENV-2, DENV-3 and DENV-4 serotypes were found in 79 (10.37%), 506 (66.40%), 151 (19.82%) and 26 (3.41%) cases respectively. DENV-1, DENV-2 and DENV-3 were in circulation throughout. Total 105 strains were genotyped. Genotype IV of DENV-1 serotype was circulating till 2014 which was later replaced by genotype V. A distinct seasonality with increase in number of cases in post-monsoon period was seen. INTERPRETATION CONCLUSION: DENV-1, DENV-2 and DENV-3 were found to be in circulation in North India. Predominant serotype/genotype changed at times, but not at regular intervals.


Subject(s)
Antibodies, Viral , Dengue Virus , Dengue , Genotype , Serogroup , India/epidemiology , Dengue Virus/genetics , Dengue Virus/classification , Dengue Virus/isolation & purification , Humans , Dengue/virology , Dengue/epidemiology , Dengue/blood , Antibodies, Viral/blood , Immunoglobulin M/blood , Female , Serotyping , Male , Adult , Child , Enzyme-Linked Immunosorbent Assay , Adolescent , Middle Aged , Young Adult , Seasons , Child, Preschool
15.
J Environ Manage ; 355: 120508, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38457896

ABSTRACT

Crude oil contamination has inflicted severe damage to soil ecosystems, necessitating effective remediation strategies. This study aimed to compare the efficacy of four different techniques (biostimulation, bioaugmentation, bioaugmentation + biostimulation, and natural attenuation) for remediating agricultural soil contaminated with crude oil using soil microcosms. A consortium of previously characterized bacteria Xanthomonas boreopolis, Microbacterium schleiferi, Pseudomonas aeruginosa, and Bacillus velezensis was constructed for bioaugmentation. The microbial count for the constructed consortium was recorded as 2.04 ± 0.11 × 108 CFU/g on 60 d in augmented and stimulated soil samples revealing their potential to thrive in chemically contaminated-stress conditions. The microbial consortium through bioaugmentation + biostimulation approach resulted in 79 ± 0.92% degradation of the total polyaromatic hydrocarbons (2 and 3 rings âˆ¼ 74%, 4 and 5 rings âˆ¼ 83% loss) whereas, 91 ± 0.56% degradation of total aliphatic hydrocarbons (C8-C16 ∼ 90%, C18-C28 ∼ 92%, C30 to C40 ∼ 88% loss) was observed in 60 d. Further, after 60 d of microcosm treatment, the treated soil samples were used for phytotoxicity assessment using wheat (Triticum aestivum), black chickpea (Cicer arietinum), and mustard (Brassica juncea). The germination rates for wheat (90%), black chickpea (100%), and mustard (100%) were observed in 7 d with improved shoot-root length and biomass in both bioaugmentation and biostimulation approaches. This study projects a comprehensive approach integrating bacterial consortium and nutrient augmentation strategies and underscores the vital role of innovative environmental management practices in fostering sustainable remediation of oil-contaminated soil ecosystems. The formulated bacterial consortium with a nutrient augmentation strategy can be utilized to restore agricultural lands towards reduced phytotoxicity and improved plant growth.


Subject(s)
Petroleum , Soil Pollutants , Biodegradation, Environmental , Soil/chemistry , Ecosystem , Soil Pollutants/analysis , Hydrocarbons/metabolism , Soil Microbiology
16.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542288

ABSTRACT

Hypoxia-inducible factor-1α (HIF-1α) is a major transcriptional factor, which plays an important role in cellular reprogramming processes under hypoxic conditions, which facilitate solid tumors' progression. HIF-1α is directly involved in the regulation of the angiogenesis, metabolic reprogramming, and extracellular matrix remodeling of the tumor microenvironment. Therefore, an in-depth study on the role of HIF-1α in solid tumor malignancies is required to develop novel anti-cancer therapeutics. HIF-1α also plays a critical role in regulating growth factors, such as the vascular endothelial growth factor, fibroblast growth factor, and platelet-derived growth factor, in a network manner. Additionally, it plays a significant role in tumor progression and chemotherapy resistance by regulating a variety of angiogenic factors, including angiopoietin 1 and angiopoietin 2, matrix metalloproteinase, and erythropoietin, along with energy pathways. Therefore, this review attempts to provide comprehensive insight into the role of HIF-1α in the energy and angiogenesis pathways of solid tumors.


Subject(s)
Signal Transduction , Vascular Endothelial Growth Factor A , Humans , Vascular Endothelial Growth Factor A/metabolism , Cell Line, Tumor , Transcription Factors , Vascular Endothelial Growth Factors , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neovascularization, Pathologic/pathology
17.
Toxicol Mech Methods ; 34(6): 703-716, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38465425

ABSTRACT

Aluminum (Al) overexposure damages various organ systems, especially the nervous system. Regularly administered aluminum chloride (AlCl3) to rats causes dementia and pathophysiological alterations linked to Alzheimer's disease (AD). Taxifolin's neuroprotective effects against AlCl3-induced neurotoxicity in vitro and in vivo studies were studied. Taxifolin (0.1, 0.3, 1, 3, and 10 µM) was tested against AlCl3 (5 mM)-induced neurotoxicity in C6 and SH-SY5Y cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Additionally, neural morphology was examined by confocal microscopy. Additionally, taxifolin's mode of binding with the co-receptor of toll-like receptor 4 (TLR4), human myeloid differentiation-2 (hMD-2) was investigated. AlCl3 (25 mg/kg/d, i.p.) was administered to rats for 14 d, and from the eighth day, taxifolin (1, 2, and 5 mg/kg/d, i.p.) was given along with AlCl3. This study assessed memory impairment using the Morris water maze, plus maze, and pole tests. This study also performed measurement of oxidant (malondialdehyde [MDA] and nitrite), antioxidant (reduced glutathione), and inflammatory (myeloperoxidase [MPO] activity, TLR4 expression) parameters in rats' brain in addition to histopathology. The docking score for taxifolin with hMD-2 was found to be -4.38 kcal/mol. Taxifolin treatment reduced the neurotoxicity brought on by AlCl3 in both C6 and SH-SY5Y cells. Treatment with 10 µM taxifolin restored AlCl3-induced altered cell morphology. AlCl3 administration caused memory loss, oxidative stress, inflammation (increased MPO activity and TLR4 expression), and brain atrophy. Taxifolin treatment significantly improved the AlCl3-induced memory impairment. Taxifolin treatment also mitigated the histopathological and neurochemical consequences of repeated AlCl3 administration in rats. Thus, taxifolin may protect the brain against AD.


Subject(s)
Aluminum Chloride , Brain , Neuroprotective Agents , Quercetin , Rats, Wistar , Toll-Like Receptor 4 , Animals , Quercetin/analogs & derivatives , Quercetin/pharmacology , Quercetin/therapeutic use , Aluminum Chloride/toxicity , Toll-Like Receptor 4/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Male , Humans , Brain/drug effects , Brain/pathology , Brain/metabolism , Molecular Docking Simulation , Dementia/chemically induced , Dementia/drug therapy , Dementia/prevention & control , Dementia/pathology , Oxidative Stress/drug effects , Rats , Cell Line, Tumor , Dose-Response Relationship, Drug
18.
Int J Lab Hematol ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456256

ABSTRACT

INTRODUCTION: Despite extensive research, comprehensive characterization of leukaemic stem cells (LSC) and information on their immunophenotypic differences from normal haematopoietic stem cells (HSC) is lacking. Herein, we attempted to unravel the immunophenotypic (IPT) characteristics and heterogeneity of LSC using multiparametric flow cytometry (MFC) and single-cell sequencing. MATERIALS AND METHODS: Bone marrow aspirate samples from patients with acute myeloid leukaemia (AML) were evaluated using MFC at diagnostic and post induction time points using a single tube-10-colour-panel containing LSC-associated antibodies CD123, CD45RA, CD44, CD33 and COMPOSITE (CLL-1, TIM-3, CD25, CD11b, CD22, CD7, CD56) with backbone markers that is, CD45, CD34, CD38, CD117, sCD3. Single-cell sequencing of the whole transcriptome was also done in a bone marrow sample. RESULTS: LSCs and HSCs were identified in 225/255 (88.2%) and 183/255 (71.6%) samples, respectively. Significantly higher expression was noted for COMPOSITE, CD45RA, CD123, CD33, and CD44 in LSCs than HSCs (p < 0.0001). On comparing the LSC specific antigen expressions between CD34+ (n = 184) and CD34- LSCs (n = 41), no difference was observed between the groups. More than one sub-population of LSC was demonstrated in 4.4% of cases, which further revealed high concordance between MFC and single cell transcriptomic analysis in one of the cases displaying three LSC subpopulations by both methods. CONCLUSION: A single tube-10-colour MFC panel is proposed as an easy and reproducible tool to identify and discriminate LSCs from HSCs. LSCs display both inter- and intra-sample heterogeneity in terms of antigen expressions, which opens the facets for single cell molecular analysis to elucidate the role of subpopulations of LSCs in AML progression.

19.
Syst Biol Reprod Med ; 70(1): 59-72, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38442080

ABSTRACT

The present study aimed to identify novel biostimulatory compounds in boar seminal gel (SG), saliva and semen using Gas chromatography-mass spectrometry (GC-MS). The bio-stimulatory effect of SG, SG + saliva and SG + semen on young boar for semen collection as well were employed to study bio-stimulatory effects on gilts and sows. Distilled water (DW) exposure was kept as control. SG, saliva and semen were screened for total 105, 96 and 89 compounds. The highest concentration was of alkanes followed by sugar alcohols, then hydrocarbons, amino acids and fatty acids. Elaidic acid was the novel compound identified in pigs. Significantly higher (p < 0.05) number of males got trained in exposure to SG (80%), SG + saliva (75%) and SG + semen (75%) than control (0%). The time (hrs) taken by young boars to get trained on exposure to combination of SG + saliva (244 ± 22.19) and SG + semen (216 ± 13.14) was lesser (p < 0.05) than SG (356 ± 61.85) alone. Interval (hrs) from initiation of exposure for exhibition of different sexual behaviour by males on exposure to SG, saliva and semen was lesser (p < 0.05) than control. Significantly (p < 0.05) higher number of females showed estrus response to exposure of SG (72.72%), SG + saliva (69.23%) and SG + semen (76.92%) than control (0). Interval (hrs) taken to exhibit estrus was shorter (p < 0.05) in females exposed to SG + saliva (201.88 ± 12.66), SG + semen (198.20 ± 9.42) than SG (262.14 ± 20.06) alone. Interval (hrs) for exhibition of different sexual behaviour by females on exposure to SG + saliva and SG + semen was lesser (p < 0.05) than control. In conclusion, novel compounds were identified in boar seminal gel, saliva and semen with biostimulatory properties have been identified in boar SG, saliva and semen. The combined exposure of SG with saliva and semen has more intense biostimulation effect than SG alone for training of young boars and estrus induction in gilts and sows. Such compounds biostimulatory effects can be exploited for augmenting reproductive efficiency in pigs.


Subject(s)
Body Fluids , Saliva , Swine , Animals , Female , Male , Semen , Reproduction , Alkanes
20.
Bioresour Technol ; 397: 130469, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382722

ABSTRACT

This study focuses on the development of a scalable method for producing poly(3-hydroxypropionate), a homopolymer with significant physico-mechanical properties, through the use of metabolically-engineered Escherichia coli K12 (MG1655) and externally supplied 3-hydroxypropionate. The polymer synthesis pathway was established and optimized through synthetic biology techniques, including the effects of overexpressing phasin and cell division proteins. The optimized strain achieved unprecedented production titers of 9.5 g/L in flask cultures and 80 g/L in fed-batch bioreactors within 45 h. The analysis of poly(3-hydroxypropionate) polymer properties revealed it possesses excellent elasticity (Young's modulus < 6 MPa) and tensile strength (∼80 MPa), positioning it within the category of elastomers or flexible plastics. These findings suggest a viable path for the sustainable, large-scale production of the poly(3-hydroxypropionate) biopolymer.


Subject(s)
Escherichia coli , Lactic Acid/analogs & derivatives , Metabolic Engineering , Escherichia coli/metabolism , Polyesters/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...