Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-500148

ABSTRACT

The SARS-CoV-2 Omicron (B.1.1.529) Variant of Concern (VOC) and its sub-lineages (including BA.2, BA.4/5, BA.2.12.1) contain spike mutations that confer high level resistance to neutralizing antibodies. The NVX-CoV2373 vaccine, a protein nanoparticle vaccine, has value in countries with constrained cold-chain requirements. Here we report neutralizing titers following two or three doses of NVX-CoV2373. We show that after two doses, Omicron sub-lineages BA.1 and BA.4 were resistant to neutralization by 72% (21/29) and 59% (17/29) of samples. However, after a third dose of NVX-CoV2373, we observed high titers against Omicron BA.1 (GMT: 1,197) and BA.4 (GMT: 582), with responses similar in magnitude to those triggered by three doses of an mRNA vaccine. These data are of particular relevance as BA.4 is emerging to become the dominant strain in many locations, and highlight the potential utility of the NVX-CoV2373 vaccine as a booster in resource-limited environments.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-442782

ABSTRACT

The 2019 outbreak of a severe respiratory disease caused by an emerging coronavirus, SARS-CoV-2, has spread globally with high morbidity and mortality. Co-circulating seasonal influenza has greatly diminished recently, but expected to return with novel strains emerging, thus requiring annual strain adjustments. We have developed a recombinant hemagglutinin (HA) quadrivalent nanoparticle influenza vaccine (qNIV) produced using an established recombinant insect cell expression system to produce nanoparticles. Influenza qNIV adjuvanted with Matrix-M was well-tolerated and induced robust antibody and cellular responses, notably against both homologous and drifted A/H3N2 viruses in Phase 1, 2, and 3 trials. We also developed a full-length SARS-CoV-2 spike protein vaccine which is stable in the prefusion conformation (NVX-CoV2373) using the same platform technology. In phase 3 clinical trials, NVX-CoV2373 is highly immunogenic and protective against the prototype strain and B.1.1.7 variant. Here we describe the immunogenicity and efficacy of a combination quadrivalent seasonal flu and COVID-19 vaccine (qNIV/CoV2373) in ferret and hamster models. The combination qNIV/CoV2373 vaccine produces high titer influenza hemagglutination inhibiting (HAI) and neutralizing antibodies against influenza A and B strains. The combination vaccine also elicited antibodies that block SARS-CoV-2 spike protein binding to the human angiotensin converting enzyme-2 (hACE2) receptor. Significantly, hamsters immunized with qNIV/CoV2373 vaccine and challenged with SARS-CoV-2 were protected against weight loss and were free of replicating SARS-CoV-2 in the upper and lower respiratory tract with no evidence of viral pneumonia. This study supports evaluation of qNIV/CoV2373 combination vaccine as a preventive measure for seasonal influenza and CoVID-19. HighlightsO_LICombination qNIV/CoV2373 vaccine induced protective hemagglutination inhibition (HAI) responses to seasonal influenza A and B unchanged when formulated with recombinant spike. C_LIO_LICombination qNIV/CoV2373 vaccine maintained clinical and virologic protection against experimental challenge with SARS-CoV-2. C_LIO_LICombination qNIV/CoV2373 vaccine showed no clinical or histological sign of enhanced disease following experimental challenge with SARS-CoV-2. C_LIO_LICombination qNIV/CoV2373 vaccine induced antibodies against SARS-CoV-2 neutralizing epitopes common between US-WA and B.1.352 variant. C_LI

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21252477

ABSTRACT

BackgroundThe emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants threatens progress toward control of the Covid-19 pandemic. Evaluation of Covid-19 vaccine efficacy against SARS-CoV-2 variants is urgently needed to inform vaccine development and use. MethodsIn this phase 2a/b, multicenter, randomized, observer-blinded, placebo-controlled trial in South Africa, healthy human immunodeficiency virus (HIV)-negative adults (18 to 84 years) or medically stable people living with HIV (PLWH) (18 to 84 years) were randomized in a 1:1 ratio to receive two doses, administered 21 days apart, of either NVX-CoV2373 nanoparticle vaccine (5 {micro}g recombinant spike protein with 50 {micro}g Matrix-M1 adjuvant) or placebo. The primary endpoints were safety and vaccine efficacy [≥]7 days following the second dose against laboratory-confirmed symptomatic Covid-19 in previously SARS-CoV-2 uninfected participants. ResultsA total of 4387 participants were randomized and dosed at least once, 2199 with NVX-CoV2373 and 2188 with placebo. Approximately 30% of participants were seropositive at baseline. Among 2684 baseline seronegative participants (94% HIV-negative; 6% PLWH), there were 15 and 29 predominantly mild to moderate Covid-19 cases in NVX-CoV2373 and placebo recipients, respectively; vaccine efficacy was 49.4% (95% confidence interval [CI]: 6.1 to 72.8). Efficacy in HIV-negative participants was 60.1% (95% CI: 19.9 to 80.1), and did not differ by baseline serostatus. Of the primary endpoint cases with available whole genome sequencing, 38 (92.7%) of 41 were the B.1.351 variant. Post-hoc vaccine efficacy against B.1.351 was 51.0% (95% CI: - 0.6 to 76.2) in HIV-negative participants. Among placebo recipients, the incidence of symptomatic Covid-19 was similar in baseline seronegative vs baseline seropositive participants during the first 2 months of follow-up (5.3% vs 5.2%). Preliminary local and systemic reactogenicity were primarily mild to moderate and transient, and higher with NVX-CoV2373; serious adverse events were rare in both groups. ConclusionsThe NVX-CoV2373 vaccine was efficacious in preventing Covid-19, which was predominantly mild to moderate and due to the B.1.351 variant, while evidence of prior infection with the presumptive original SARS-CoV-2 did not confer protection against probable B.1.351 disease. (Funded by Novavax, The Bill and Melinda Gates Foundation, and the Coalition for Epidemic Preparedness Innovations; ClinicalTrials.gov number, NCT04533399)

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20168435

ABSTRACT

BackgroundNVX-CoV2373 is a recombinant nanoparticle vaccine composed of trimeric full-length SARS-CoV-2 spike glycoproteins. We present the Day 35 primary analysis of our trial of NVX-CoV2373 with or without the saponin-based Matrix-M1 adjuvant in healthy adults. MethodsThis is a randomized, observer-blinded, placebo-controlled, phase 1 trial in 131 healthy adults. Trial vaccination comprised two intramuscular injections, 21 days apart. Primary outcomes were reactogenicity, safety labs, and immunoglobulin G (IgG) anti-spike protein response. Secondary outcomes included adverse events, wild-type virus neutralizing antibody, and T-cell responses. ResultsParticipants received NVX-CoV2373 with or without Matrix-M1 (n=106) or placebo (n=25). There were no serious adverse events. Reactogenicity was mainly mild in severity and of short duration (mean [≤]2 days), with second vaccinations inducing greater local and systemic reactogenicity. The adjuvant significantly enhanced immune responses and was antigen dose-sparing, and the two-dose 5g NVX-CoV2373/Matrix-M1 vaccine induced mean anti-spike IgG and neutralizing antibody responses that exceeded the mean responses in convalescent sera from COVID-19 patients with clinically significant illnesses. The vaccine also induced antigen-specific T cells with a largely T helper 1 (Th1) phenotype. ConclusionsNVX-CoV2373/Matrix-M1 was well tolerated and elicited robust immune responses (IgG and neutralization) four-fold higher than the mean observed in COVID-19 convalescent serum from participants with clinical symptoms requiring medical care and induced CD4+ T-cell responses biased toward a Th1 phenotype. These findings suggest that the vaccine may confer protection and support transition to efficacy evaluations to test this hypothesis. (Funded by the Coalition for Epidemic Preparedness Innovations; ClinicalTrials.gov number, NCT04368988).

SELECTION OF CITATIONS
SEARCH DETAIL
...