Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 32(19): 5260-5275, 2023 10.
Article in English | MEDLINE | ID: mdl-37635403

ABSTRACT

Researchers often examine symbiont host specificity as a species-level pattern, but it can also be key to understanding processes occurring at the population level, which are not as well understood. The specialist-generalist variation hypothesis (SGVH) attempts to explain how host specificity influences population-level processes, stating that single-host symbionts (specialists) exhibit stronger population genetic structure than multi-host symbionts (generalists) because of fewer opportunities for dispersal and more restricted gene flow between populations. However, this hypothesis has not been tested in systems with highly mobile hosts, in which population connectivity may vary temporally and spatially. To address this gap, we tested the SGVH on proctophyllodid feather mites found on migratory warblers (family Parulidae) with contrasting host specificities, Amerodectes protonotaria (a host specialist of Protonotaria citrea) and A. ischyros (a host generalist of 17 parulid species). We used a pooled-sequencing approach and a novel workflow to analyse genetic variants obtained from whole genome data. Both mite species exhibited fairly weak population structure overall, and contrary to predictions of the SGVH, the generalist was more strongly structured than the specialist. These results may suggest that specialists disperse more freely among conspecifics, whereas generalists sort according to geography. Furthermore, our results may reflect an unexpected period for mite transmission - during the nonbreeding season of migratory hosts - as mite population structure more closely reflects the distributions of hosts during the nonbreeding season. Our findings alter our current understanding of feather mite biology and highlight the potential for studies to explore factors driving symbiont diversification at multiple evolutionary scales.


Subject(s)
Mites , Passeriformes , Animals , Mites/genetics , Passeriformes/genetics , Biological Evolution , Host Specificity , Geography , Symbiosis/genetics
2.
Article in English | MEDLINE | ID: mdl-36381539

ABSTRACT

The Prothonotary Warbler (Protonotaria citrea) is a nearctic-neotropical migratory songbird that breeds in forested swamps and riparian areas in the eastern-central United States and southern Ontario. It is the sole eastern North American wood-warbler that nests in cavities, the only species in the genus Protonotaria, and is one of the few hole-nesting hosts of the Brown-headed Cowbird (Molothrus ater), an obligate brood parasite. We present the whole genome sequence of this wood-warbler species. Illumina sequencing was performed on a genetic sample from a single female individual. The reads were assembled using a de novo method followed by a finishing step. The raw and assembled data is publicly available via Genbank: Sequence Read Archive (SRR19579445) and Assembly (JAOYNP000000000).

3.
Mol Ecol ; 28(9): 2122-2135, 2019 05.
Article in English | MEDLINE | ID: mdl-30912237

ABSTRACT

Understanding migratory connectivity is essential for determining the drivers behind population dynamics and for implementing effective conservation strategies for migratory species. Genetic markers provide a means to describe migratory connectivity; however, they can be uninformative for species with weak population genetic structure, which has limited their application. Here, we demonstrated a genomic approach to describing migratory connectivity in the prothonotary warbler, Protonotaria citrea, a Neotropical songbird of conservation concern. Using 26,189 single nucleotide polymorphisms (SNPs), we revealed regional genetic structure between the Mississippi River Valley and the Atlantic Seaboard with overall weak genetic differentiation among populations (FST  = 0.0055; 95% CI: 0.0051-0.0059). Genetic variation had a stronger association with geographic rather than environmental factors, with each explaining 14.5% and 8.2% of genetic variation, respectively. By varying the numbers of genomic markers used in population assignment models with individuals of known provenance, we identified a maximum assignment accuracy (89.7% to site, 94.3% to region) using a subset of 600 highly differentiated SNPs. We then assigned samples from nonbreeding sites to breeding region and found low migratory connectivity. Our results highlight the importance of filtering markers for informative loci in models of population assignment. Quantifying migratory connectivity for weakly structured species will be useful for expanding studies to a wider range of migratory species across taxonomic groups and may contribute to a deeper understanding of the evolution of migratory strategies.


Subject(s)
Animal Migration/physiology , Genetics, Population , Songbirds/physiology , Animals , Genetic Variation , Louisiana , Models, Genetic , North Carolina , Polymorphism, Single Nucleotide , Principal Component Analysis , Reproducibility of Results , Songbirds/genetics
4.
J Parasitol ; 98(1): 93-102, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21790366

ABSTRACT

Prothonotary warbler (Protonotaria citrea) has shown a long-term decline in abundance in the United States. As a long-range migrant, these warblers are exposed to parasites in both tropical and temperate regions. The focus of this study was to use molecular techniques to examine the temporal prevalence patterns of heamosopridian parasites Plasmodium and Haemoproteus in breeding prothonotary warblers. The prevalence (presence or absence) of Plasmodium and Haemoproteus species was assayed using primer sets for the cytochrome b gene of the mitochondrial DNA. Blood samples were obtained from 187 adult prothonotary warblers collected at 3 central Virginia, U.S.A., breeding sites. The relationship between haemosporidian parasite infections and reproductive success also was examined. We found that 71% of captured prothonotary warblers were infected with haemosporidian parasites, specifically, with 36% prevalence for Haemoproteus spp. and 44% prevalence for Plasmodium spp., during the 2008 breeding season; for both parasites, prevalence increased throughout the season. We found significant variation in haemosporidian parasite prevalence across the breeding season that was strongly site specific. Conversely, we found no significant effects of haemosporidian parasite infections on the reproductive success of prothonotary warblers. This is in sharp contrast to recent reports suggesting considerable effects of these parasites on the reproductive success of wild birds.


Subject(s)
Haemosporida/isolation & purification , Malaria, Avian/epidemiology , Plasmodium/isolation & purification , Protozoan Infections, Animal/epidemiology , Songbirds/parasitology , Analysis of Variance , Animals , Bird Diseases/epidemiology , Bird Diseases/parasitology , Clutch Size , Female , Linear Models , Logistic Models , Malaria, Avian/parasitology , Male , Odds Ratio , Prevalence , Protozoan Infections, Animal/parasitology , Songbirds/anatomy & histology , Songbirds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...