Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
PLoS One ; 18(9): e0290690, 2023.
Article in English | MEDLINE | ID: mdl-37729108

ABSTRACT

In this study, we examine the long-term trajectory of violence in societies that inhabited the coast of the Atacama Desert in northern Chile using three lines of evidence: bioarchaeology, geoarchaeology and socio-cultural contexts (rock art, weapons, and settlement patterns). These millennia-old populations adopted a way of life, which they maintained for 10,000 years, based on fishing, hunting, and maritime gathering, complementing this with terrestrial resources. We analyzed 288 adult individuals to search for traumas resulting from interpersonal violence and used strontium isotopes 87Sr/86Sr as a proxy to evaluate whether individuals that showed traces of violence were members of local or non-local groups. Moreover, we evaluated settlement patterns, rock art, and weapons. The results show that the violence was invariant during the 10,000 years in which these groups lived without contact with the western world. During the Formative Period (1000 BC-AD 500), however, the type of violence changed, with a substantial increase in lethality. Finally, during the Late Intermediate Period (AD 1000-1450), violence and lethality remained similar to that of the Formative Period. The chemical signal of Sr shows a low frequency of individuals who were coastal outsiders, suggesting that violence occurred between local groups. Moreover, the presence of weapons and rock art depicting scenes of combat supports the notion that these groups engaged in violence. By contrast, the settlement pattern shows no defensive features. We consider that the absence of centralized political systems could have been a causal factor in explaining violence, together with the fact that these populations were organized in small-scale grouping. Another factor may have been competition for the same resources in the extreme environments of the Atacama Desert. Finally, from the Formative Period onward, we cannot rule out a certain level of conflict between fishers and their close neighbors, the horticulturalists.


Subject(s)
Brassicaceae , Mustelidae , Adult , Animals , Humans , Hunting , Strontium Isotopes , Violence
2.
JMIR Public Health Surveill ; 9: e46383, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37651182

ABSTRACT

BACKGROUND: Avian influenza (AI) virus detections occurred frequently in 2022 and continue to pose a health, economic, and food security risk. The most recent global analysis of official reports of animal outbreaks and human infections with all reportable AI viruses was published almost a decade ago. Increased or renewed reports of AI viruses, especially high pathogenicity H5N8 and H5N1 in birds and H5N1, H5N8, and H5N6 in humans globally, have established the need for a comprehensive review of current global AI virus surveillance data to assess the pandemic risk of AI viruses. OBJECTIVE: This study aims to provide an analysis of global AI animal outbreak and human case surveillance information from the last decade by describing the circulating virus subtypes, regions and temporal trends in reporting, and country characteristics associated with AI virus outbreak reporting in animals; surveillance and reporting gaps for animals and humans are identified. METHODS: We analyzed AI virus infection reports among animals and humans submitted to animal and public health authorities from January 2013 to June 2022 and compared them with reports from January 2005 to December 2012. A multivariable regression analysis was used to evaluate associations between variables of interest and reported AI virus animal outbreaks. RESULTS: From 2013 to 2022, 52.2% (95/182) of World Organisation for Animal Health (WOAH) Member Countries identified 34 AI virus subtypes during 21,249 outbreaks. The most frequently reported subtypes were high pathogenicity AI H5N1 (10,079/21,249, 47.43%) and H5N8 (6722/21,249, 31.63%). A total of 10 high pathogenicity AI and 6 low pathogenicity AI virus subtypes were reported to the WOAH for the first time during 2013-2022. AI outbreaks in animals occurred in 26 more Member Countries than reported in the previous 8 years. Decreasing World Bank income classification was significantly associated with decreases in reported AI outbreaks (P<.001-.02). Between January 2013 and June 2022, 17/194 (8.8%) World Health Organization (WHO) Member States reported 2000 human AI virus infections of 10 virus subtypes. H7N9 (1568/2000, 78.40%) and H5N1 (254/2000, 12.70%) viruses accounted for the most human infections. As many as 8 of these 17 Member States did not report a human case prior to 2013. Of 1953 human cases with available information, 74.81% (n=1461) had a known animal exposure before onset of illness. The median time from illness onset to the notification posted on the WHO event information site was 15 days (IQR 9-30 days; mean 24 days). Seasonality patterns of animal outbreaks and human infections with AI viruses were very similar, occurred year-round, and peaked during November through May. CONCLUSIONS: Our analysis suggests that AI outbreaks are more frequently reported and geographically widespread than in the past. Global surveillance gaps include inconsistent reporting from all regions and human infection reporting delays. Continued monitoring for AI virus outbreaks in animals and human infections with AI viruses is crucial for pandemic preparedness.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Animals , Humans , Influenza in Birds/epidemiology , Disease Outbreaks , Pandemics
4.
Am J Hum Biol ; 35(2): e23819, 2023 02.
Article in English | MEDLINE | ID: mdl-36251616

ABSTRACT

For more than two centuries, lack of sunlight has been understood to cause vitamin D deficiency and documented as a primary cause of rickets. As such, evidence of rickets in the archeological record has been used as a proxy for vitamin D status in past individuals and populations. In the last decade, a clinical global consensus has emerged wherein it is recognized that dietary calcium deficiency also plays a role in the manifestation of rickets and classic skeletal deformities may not form if dietary calcium is normal even if vitamin D is deficient. This disease is now clinically called "nutritional rickets" to reflect the fact that rickets can take calcium deficiency-predominant or vitamin D deficiency-predominant forms. However, there are currently no paleopathological studies wherein dietary calcium deficiency is critically considered a primary etiology of the disease. We review here the interplay of calcium, vitamin D, and phosphorous in bone homeostasis, examine the role of dietary calcium in human health, and critically explore the clinical literature on calcium deficiency-predominant rickets. Finally, we report a case of rickets from the late Formative Period (~2500-1500 years ago) of the Atacama Desert and argue the disease in this infant is likely an example of calcium deficiency-predominant rickets. We conclude that most archeological cases of rickets are the result of multiple micronutrient deficiencies that compound to manifest in macroscopic skeletal lesions. For clinicians, these factors are important for implementing best treatment practice, and for paleopathologists they are necessary for appropriate interpretation of health in past communities.


Subject(s)
Rickets , Vitamin D Deficiency , Infant , Humans , Calcium, Dietary , Calcium , Rickets/etiology , Rickets/drug therapy , Vitamin D Deficiency/complications , Vitamin D , Vitamins
5.
Emerg Infect Dis ; 28(13): S26-S33, 2022 12.
Article in English | MEDLINE | ID: mdl-36502434

ABSTRACT

A network of global respiratory disease surveillance systems and partnerships has been built over decades as a direct response to the persistent threat of seasonal, zoonotic, and pandemic influenza. These efforts have been spearheaded by the World Health Organization, country ministries of health, the US Centers for Disease Control and Prevention, nongovernmental organizations, academic groups, and others. During the COVID-19 pandemic, the US Centers for Disease Control and Prevention worked closely with ministries of health in partner countries and the World Health Organization to leverage influenza surveillance systems and programs to respond to SARS-CoV-2 transmission. Countries used existing surveillance systems for severe acute respiratory infection and influenza-like illness, respiratory virus laboratory resources, pandemic influenza preparedness plans, and ongoing population-based influenza studies to track, study, and respond to SARS-CoV-2 infections. The incorporation of COVID-19 surveillance into existing influenza sentinel surveillance systems can support continued global surveillance for respiratory viruses with pandemic potential.


Subject(s)
COVID-19 , Influenza, Human , Humans , Pandemics/prevention & control , COVID-19/epidemiology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , SARS-CoV-2 , World Health Organization
6.
MMWR Morb Mortal Wkly Rep ; 71(29): 913-919, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35862284

ABSTRACT

Before the emergence of SARS-CoV-2, the virus that causes COVID-19, influenza activity in the United States typically began to increase in the fall and peaked in February. During the 2021-22 season, influenza activity began to increase in November and remained elevated until mid-June, featuring two distinct waves, with A(H3N2) viruses predominating for the entire season. This report summarizes influenza activity during October 3, 2021-June 11, 2022, in the United States and describes the composition of the Northern Hemisphere 2022-23 influenza vaccine. Although influenza activity is decreasing and circulation during summer is typically low, remaining vigilant for influenza infections, performing testing for seasonal influenza viruses, and monitoring for novel influenza A virus infections are important. An outbreak of highly pathogenic avian influenza A(H5N1) is ongoing; health care providers and persons with exposure to sick or infected birds should remain vigilant for onset of symptoms consistent with influenza. Receiving a seasonal influenza vaccine each year remains the best way to protect against seasonal influenza and its potentially severe consequences.


Subject(s)
COVID-19 , Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza B virus/genetics , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Population Surveillance , SARS-CoV-2 , Seasons , United States/epidemiology
7.
Bull World Health Organ ; 100(6): 366-374, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35694628

ABSTRACT

Objective: To assess the stability of improvements in global respiratory virus surveillance in countries supported by the United States Centers for Disease Control and Prevention (CDC) after reductions in CDC funding and with the stress of the coronavirus disease 2019 (COVID-19) pandemic. Methods: We assessed whether national influenza surveillance systems of CDC-funded countries: (i) continued to analyse as many specimens between 2013 and 2021; (ii) participated in activities of the World Health Organization's (WHO) Global Influenza Surveillance and Response System; (iii) tested enough specimens to detect rare events or signals of unusual activity; and (iv) demonstrated stability before and during the COVID-19 pandemic. We used CDC budget records and data from the WHO Global Influenza Surveillance and Response System. Findings: While CDC reduced per-country influenza funding by about 75% over 10 years, the number of specimens tested annually remained stable (mean 2261). Reporting varied substantially by country and transmission zone. Countries funded by CDC accounted for 71% (range 61-75%) of specimens included in WHO consultations on the composition of influenza virus vaccines. In 2019, only eight of the 17 transmission zones sent enough specimens to WHO collaborating centres before the vaccine composition meeting to reliably identify antigenic variants. Conclusion: Great progress has been made in the global understanding of influenza trends and seasonality. To optimize surveillance to identify atypical influenza viruses, and to integrate molecular testing, sequencing and reporting of severe acute respiratory syndrome coronavirus 2 into existing systems, funding must continue to support these efforts.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , COVID-19/epidemiology , COVID-19/prevention & control , Centers for Disease Control and Prevention, U.S. , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics/prevention & control , Population Surveillance , United States/epidemiology
8.
MMWR Morb Mortal Wkly Rep ; 71(6): 206-211, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35143464

ABSTRACT

Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 (the virus that causes COVID-19), which can exhibit characteristics that potentially affect public health and clinical interventions, including increased transmissibility, illness severity, and capacity for immune escape. During June 2021-January 2022, CDC expanded genomic surveillance data sources to incorporate sequence data from public repositories to produce weighted estimates of variant proportions at the jurisdiction level and refined analytic methods to enhance the timeliness and accuracy of national and regional variant proportion estimates. These changes also allowed for more comprehensive variant proportion estimation at the jurisdictional level (i.e., U.S. state, district, territory, and freely associated state). The data in this report are a summary of findings of recent proportions of circulating variants that are updated weekly on CDC's COVID Data Tracker website to enable timely public health action.† The SARS-CoV-2 Delta (B.1.617.2 and AY sublineages) variant rose from 1% to >50% of viral lineages circulating nationally during 8 weeks, from May 1-June 26, 2021. Delta-associated infections remained predominant until being rapidly overtaken by infections associated with the Omicron (B.1.1.529 and BA sublineages) variant in December 2021, when Omicron increased from 1% to >50% of circulating viral lineages during a 2-week period. As of the week ending January 22, 2022, Omicron was estimated to account for 99.2% (95% CI = 99.0%-99.5%) of SARS-CoV-2 infections nationwide, and Delta for 0.7% (95% CI = 0.5%-1.0%). The dynamic landscape of SARS-CoV-2 variants in 2021, including Delta- and Omicron-driven resurgences of SARS-CoV-2 transmission across the United States, underscores the importance of robust genomic surveillance efforts to inform public health planning and practice.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Centers for Disease Control and Prevention, U.S. , Genomics , Humans , Prevalence , Public Health Surveillance/methods , United States/epidemiology
9.
MMWR Morb Mortal Wkly Rep ; 70(3): 95-99, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33476315

ABSTRACT

On December 14, 2020, the United Kingdom reported a SARS-CoV-2 variant of concern (VOC), lineage B.1.1.7, also referred to as VOC 202012/01 or 20I/501Y.V1.* The B.1.1.7 variant is estimated to have emerged in September 2020 and has quickly become the dominant circulating SARS-CoV-2 variant in England (1). B.1.1.7 has been detected in over 30 countries, including the United States. As of January 13, 2021, approximately 76 cases of B.1.1.7 have been detected in 12 U.S. states.† Multiple lines of evidence indicate that B.1.1.7 is more efficiently transmitted than are other SARS-CoV-2 variants (1-3). The modeled trajectory of this variant in the U.S. exhibits rapid growth in early 2021, becoming the predominant variant in March. Increased SARS-CoV-2 transmission might threaten strained health care resources, require extended and more rigorous implementation of public health strategies (4), and increase the percentage of population immunity required for pandemic control. Taking measures to reduce transmission now can lessen the potential impact of B.1.1.7 and allow critical time to increase vaccination coverage. Collectively, enhanced genomic surveillance combined with continued compliance with effective public health measures, including vaccination, physical distancing, use of masks, hand hygiene, and isolation and quarantine, will be essential to limiting the spread of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). Strategic testing of persons without symptoms but at higher risk of infection, such as those exposed to SARS-CoV-2 or who have frequent unavoidable contact with the public, provides another opportunity to limit ongoing spread.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , COVID-19/transmission , Genome, Viral , Humans , Mutation , United States/epidemiology
10.
Am J Phys Anthropol ; 174(2): 254-267, 2021 02.
Article in English | MEDLINE | ID: mdl-33017865

ABSTRACT

OBJECTIVES: This study explores whether ancient Atacama Desert populations in northern Chile were exposed to endemic boron contamination. MATERIALS AND METHODS: Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS), we studied 144 strands of ancient mummy hair, ranging from 3000 B.C. to 1500 A.D., excavated from the Lluta, Azapa, and Camarones valleys in northern Chile. We tested whether these ancient populations showed signs of significant boron concentration in hair tissue. RESULTS: On average, all individuals from these valleys showed high boron concentrations, ranging from 1.5 to 4 times above the average boron concentration in contemporary hair (baseline <0.85 µg/g). The boron concentration in mummy hair varied according to the main geographic areas mentioned above. CONCLUSIONS: The rivers of northern Chile have high geogenic boron concentrations. They contain 38 times above the recommended limit for human consumption. Geogenic boron contamination likely played a role in population morbidity and the types of crops that were cultivated in antiquity. The ancient populations were chronically affected by boron overexposure, suggesting that ancient geogenic water contamination should be considered when discussing the biocultural trajectories of ancient populations.


Subject(s)
Boron/analysis , Environmental Exposure/analysis , Adolescent , Adult , Child , Child, Preschool , Chile , Desert Climate , Female , Hair/chemistry , History, Ancient , Humans , Infant , Infant, Newborn , Male , Middle Aged , Mummies/history , Rivers/chemistry , Young Adult
11.
Nature ; 582(7811): 277-282, 2020 06.
Article in English | MEDLINE | ID: mdl-32349121

ABSTRACT

The great majority of globally circulating pathogens go undetected, undermining patient care and hindering outbreak preparedness and response. To enable routine surveillance and comprehensive diagnostic applications, there is a need for detection technologies that can scale to test many samples1-3 while simultaneously testing for many pathogens4-6. Here, we develop Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (CARMEN), a platform for scalable, multiplexed pathogen detection. In the CARMEN platform, nanolitre droplets containing CRISPR-based nucleic acid detection reagents7 self-organize in a microwell array8 to pair with droplets of amplified samples, testing each sample against each CRISPR RNA (crRNA) in replicate. The combination of CARMEN and Cas13 detection (CARMEN-Cas13) enables robust testing of more than 4,500 crRNA-target pairs on a single array. Using CARMEN-Cas13, we developed a multiplexed assay that simultaneously differentiates all 169 human-associated viruses with at least 10 published genome sequences and rapidly incorporated an additional crRNA to detect the causative agent of the 2020 COVID-19 pandemic. CARMEN-Cas13 further enables comprehensive subtyping of influenza A strains and multiplexed identification of dozens of HIV drug-resistance mutations. The intrinsic multiplexing and throughput capabilities of CARMEN make it practical to scale, as miniaturization decreases reagent cost per test by more than 300-fold. Scalable, highly multiplexed CRISPR-based nucleic acid detection shifts diagnostic and surveillance efforts from targeted testing of high-priority samples to comprehensive testing of large sample sets, greatly benefiting patients and public health9-11.


Subject(s)
CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems/genetics , Microfluidic Analytical Techniques/methods , Virus Diseases/diagnosis , Virus Diseases/virology , Animals , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Drug Resistance, Viral/genetics , Genome, Viral/genetics , HIV/classification , HIV/genetics , HIV/isolation & purification , Humans , Influenza A virus/classification , Influenza A virus/genetics , Influenza A virus/isolation & purification , Microfluidic Analytical Techniques/instrumentation , RNA, Guide, Kinetoplastida/genetics , SARS-CoV-2 , Sensitivity and Specificity
12.
Am J Phys Anthropol ; 172(2): 227-245, 2020 06.
Article in English | MEDLINE | ID: mdl-31957876

ABSTRACT

OBJECTIVES: This article addresses evidence of violence imbedded in both soft and hard tissues from early populations of hunters, fishermen, and gatherers, known as the Chinchorro culture, who lived between 10,000 and 4,000 cal yr BP, along the coast of the Atacama Desert, one of the driest environments on Earth. Our study is aimed to test two hypotheses (a) that interactions and violent behaviors increased through time as population density and social complexity augmented; and (b) that violence was more prevalent between local Chinchorro groups and groups from other inland locations. MATERIAL AND METHODS: Two lines of data were analyzed: (1) bioarchaeology, through the quantification of physical traces of interpersonal violence in skeletons and mummies from a sample of 136 adult individuals and, (2) isotopic chemical analysis (strontium) of individuals with traces of trauma in order to determine their local or foreign origin. RESULTS: Violence among Chinchorro populations was ubiquitous and remained invariant over time, with a remarkable skew to male (about 25% above female across the complete sample). Moreover, the chemical signature of individuals with traces of violence was not of foreign origin. DISCUSSION: The violence exerted by the Chinchorro groups was not related to increased population size, nor social complexity and was mostly restricted to individuals coming from the same coastal habitat. That is, our data suggest that violence was constant across the Archaic period among the Chinchorro, implying that violent behavior was part of the sociocultural repertory of these populations, likely associated to mechanisms to resolve conflicts and social tensions.


Subject(s)
Fractures, Bone/ethnology , Social Behavior/history , Violence/ethnology , Adolescent , Adult , Archaeology , Chile , Desert Climate , Female , History, Ancient , Humans , Male , Young Adult
13.
MMWR Morb Mortal Wkly Rep ; 68(40): 880-884, 2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31600182

ABSTRACT

During May 19-September 28, 2019,* low levels of influenza activity were reported in the United States, with cocirculation of influenza A and influenza B viruses. In the Southern Hemisphere seasonal influenza viruses circulated widely, with influenza A(H3) predominating in many regions; however, influenza A(H1N1)pdm09 and influenza B viruses were predominant in some countries. In late September, the World Health Organization (WHO) recommended components for the 2020 Southern Hemisphere influenza vaccine and included an update to the A(H3N2) and B/Victoria-lineage components. Annual influenza vaccination is the best means for preventing influenza illness and its complications, and vaccination before influenza activity increases is optimal. Health care providers should recommend vaccination for all persons aged ≥6 months who do not have contraindications to vaccination (1).


Subject(s)
Global Health/statistics & numerical data , Influenza Vaccines/chemistry , Influenza, Human/epidemiology , Population Surveillance , Drug Resistance, Viral , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza B virus/drug effects , Influenza B virus/genetics , Influenza B virus/isolation & purification , Influenza, Human/virology , Seasons , United States/epidemiology
14.
MMWR Morb Mortal Wkly Rep ; 68(24): 544-551, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31220057

ABSTRACT

Influenza activity* in the United States during the 2018-19 season (September 30, 2018-May 18, 2019) was of moderate severity (1). Nationally, influenza-like illness (ILI)† activity began increasing in November, peaked during mid-February, and returned to below baseline in mid-April; the season lasted 21 weeks,§ making it the longest season in 10 years. Illness attributed to influenza A viruses predominated, with very little influenza B activity. Two waves of influenza A were notable during this extended season: influenza A(H1N1)pdm09 viruses from October 2018 to mid-February 2019 and influenza A(H3N2) viruses from February through May 2019. Compared with the 2017-18 influenza season, rates of hospitalization this season were lower for adults, but were similar for children. Although influenza activity is currently below surveillance baselines, testing for seasonal influenza viruses and monitoring for novel influenza A virus infections should continue year-round. Receiving a seasonal influenza vaccine each year remains the best way to protect against seasonal influenza and its potentially severe consequences.


Subject(s)
Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza B virus/isolation & purification , Influenza, Human/epidemiology , Population Surveillance , Adolescent , Adult , Aged , Antiviral Agents/pharmacology , Child , Child Mortality , Child, Preschool , Cost of Illness , Drug Resistance, Viral , Hospitalization/statistics & numerical data , Humans , Infant , Infant Mortality , Infant, Newborn , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/genetics , Influenza B virus/drug effects , Influenza B virus/genetics , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza, Human/mortality , Influenza, Human/prevention & control , Influenza, Human/virology , Middle Aged , Outpatients/statistics & numerical data , Pneumonia/mortality , Seasons , Severity of Illness Index , United States/epidemiology , Young Adult
15.
MMWR Morb Mortal Wkly Rep ; 68(6): 125-134, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30763296

ABSTRACT

CDC collects, compiles, and analyzes data on influenza activity and viruses in the United States. During September 30, 2018-February 2, 2019,* influenza activity† in the United States was low during October and November, increased in late December, and remained elevated through early February. As of February 2, 2019, this has been a low-severity influenza season (1), with a lower percentage of outpatient visits for influenza-like illness (ILI), lower rates of hospitalization, and fewer deaths attributed to pneumonia and influenza, compared with recent seasons. Influenza-associated hospitalization rates among children are similar to those observed in influenza A(H1N1)pdm09 predominant seasons; 28 influenza-associated pediatric deaths occurring during the 2018-19 season have been reported to CDC. Whereas influenza A(H1N1)pdm09 viruses predominated in most areas of the country, influenza A(H3N2) viruses have predominated in the southeastern United States, and in recent weeks accounted for a growing proportion of influenza viruses detected in several other regions. Small numbers of influenza B viruses (<3% of all influenza-positive tests performed by public health laboratories) also were reported. The majority of the influenza viruses characterized antigenically are similar to the cell culture-propagated reference viruses representing the 2018-19 Northern Hemisphere influenza vaccine viruses. Health care providers should continue to offer and encourage vaccination to all unvaccinated persons aged ≥6 months as long as influenza viruses are circulating. Finally, regardless of vaccination status, it is important that persons with confirmed or suspected influenza who have severe, complicated, or progressive illness; who require hospitalization; or who are at high risk for influenza complications be treated with antiviral medications.


Subject(s)
Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza B virus/isolation & purification , Influenza, Human/epidemiology , Population Surveillance , Adolescent , Adult , Aged , Child , Child Mortality , Child, Preschool , Drug Resistance, Viral , Hospitalization/statistics & numerical data , Humans , Infant , Infant Mortality , Infant, Newborn , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/genetics , Influenza B virus/drug effects , Influenza B virus/genetics , Influenza Vaccines/chemistry , Influenza, Human/mortality , Influenza, Human/prevention & control , Influenza, Human/virology , Middle Aged , Outpatients/statistics & numerical data , Pneumonia/mortality , Prevalence , Seasons , United States/epidemiology , Young Adult
16.
MMWR Morb Mortal Wkly Rep ; 67(49): 1369-1371, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30543604

ABSTRACT

Influenza activity in the United States was low during October 2018, and, although it increased slowly during November, activity remains low across most of the country.* During the week ending December 1, 2018, the percentage of outpatient visits for influenza-like illness† (ILI) was equal to the national baseline§ (Figure) and was at or slightly above the region-specific baseline in four of the 10 U.S. Department of Health and Human Services regions¶ (Regions 4 and 7-9). The majority of jurisdictions experienced minimal or low ILI activity since September 30; however, two experienced moderate ILI activity, and two experienced high ILI activity** during the week ending December 1. The percentage of deaths attributed to pneumonia and influenza remains below the epidemic threshold,†† and the rate of influenza-associated hospitalizations remains low. Five laboratory-confirmed, influenza-associated pediatric deaths occurring since September 30 have been reported to CDC. During the week ending December 1, the majority of jurisdictions (40 states, the District of Columbia, Puerto Rico, and U.S. Virgin Islands) reported sporadic or local geographic spread of influenza activity, nine states reported regional activity, and one state reported widespread activity.§§.


Subject(s)
Influenza, Human/epidemiology , Population Surveillance , Ambulatory Care , Humans , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Influenza, Human/prevention & control , Influenza, Human/virology , Seasons , United States/epidemiology
17.
Am J Phys Anthropol ; 167(4): 876-895, 2018 12.
Article in English | MEDLINE | ID: mdl-30298514

ABSTRACT

The past two decades have seen a proliferation in bioarchaeological literature on the identification of scurvy, a disease caused by chronic vitamin C deficiency, in ancient human remains. This condition is one of the few nutritional deficiencies that can result in diagnostic osseous lesions. Scurvy is associated with low dietary diversity and its identification in human skeletal remains can provide important contextual information on subsistence strategy, resource allocation, and human-environmental interactions in past populations. A large and robust methodological body of work on the paleopathology of scurvy exists. However, the diagnostic criteria for this disease employed by bioarchaeologists have not always been uniform. Here we draw from previous research on the skeletal manifestations of scurvy in adult and juvenile human skeletal remains and propose a weighted diagnostic system for its identification that takes into account the pathophysiology of the disease, soft tissue anatomy, and clinical research. Using a sample of individuals from the prehistoric Atacama Desert in Northern Chile, we also provide a practical example of how diagnostic value might be assigned to skeletal lesions of the disease that have not been previously described in the literature.


Subject(s)
Paleopathology/methods , Scurvy , Adult , Archaeology , Bone and Bones/pathology , Child , Chile , Diagnosis, Differential , Diet , History, Ancient , Humans , Infant , Maxilla/pathology , Scurvy/diagnosis , Scurvy/history , Scurvy/pathology
18.
Sci Rep ; 8(1): 15746, 2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30341398

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

19.
MMWR Morb Mortal Wkly Rep ; 67(42): 1178-1185, 2018 Oct 26.
Article in English | MEDLINE | ID: mdl-30359347

ABSTRACT

During May 20-October 13, 2018,* low levels of influenza activity were reported in the United States, with a mix of influenza A and B viruses circulating. Seasonal influenza activity in the Southern Hemisphere was low overall, with influenza A(H1N1)pdm09 predominating in many regions. Antigenic testing of available influenza A and B viruses indicated that no significant antigenic drift in circulating viruses had emerged. In late September, the components for the 2019 Southern Hemisphere influenza vaccine were selected and included an incremental update to the A(H3N2) vaccine virus used in egg-based vaccine manufacturing; no change was recommended for the A(H3N2) component of cell-manufactured or recombinant influenza vaccines. Annual influenza vaccination is the best method for preventing influenza illness and its complications, and all persons aged ≥6 months who do not have contraindications should receive influenza vaccine, preferably before the onset of influenza circulation in their community, which often begins in October and peaks during December-February. Health care providers should offer vaccination by the end of October and should continue to recommend and administer influenza vaccine to previously unvaccinated patients throughout the 2018-19 influenza season (1). In addition, during May 20-October 13, a small number of nonhuman influenza "variant" virus infections† were reported in the United States; most were associated with exposure to swine. Although limited human-to-human transmission might have occurred in one instance, no ongoing community transmission was identified. Vulnerable populations, especially young children and other persons at high risk for serious influenza complications, should avoid swine barns at agricultural fairs, or close contact with swine.§.


Subject(s)
Disease Outbreaks , Global Health/statistics & numerical data , Influenza, Human/epidemiology , Population Surveillance , Drug Resistance, Viral , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H1N2 Subtype/drug effects , Influenza A Virus, H1N2 Subtype/genetics , Influenza A Virus, H1N2 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza B virus/drug effects , Influenza B virus/genetics , Influenza B virus/isolation & purification , Influenza Vaccines/chemistry , Influenza, Human/virology , Seasons , United States/epidemiology
20.
Sci Rep ; 8(1): 14408, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30258076

ABSTRACT

For the first time, a coding complete genome of an RNA virus has been sequenced in its original form. Previously, RNA was sequenced by the chemical degradation of radiolabeled RNA, a difficult method that produced only short sequences. Instead, RNA has usually been sequenced indirectly by copying it into cDNA, which is often amplified to dsDNA by PCR and subsequently analyzed using a variety of DNA sequencing methods. We designed an adapter to short highly conserved termini of the influenza A virus genome to target the (-) sense RNA into a protein nanopore on the Oxford Nanopore MinION sequencing platform. Utilizing this method with total RNA extracted from the allantoic fluid of influenza rA/Puerto Rico/8/1934 (H1N1) virus infected chicken eggs (EID50 6.8 × 109), we demonstrate successful sequencing of the coding complete influenza A virus genome with 100% nucleotide coverage, 99% consensus identity, and 99% of reads mapped to influenza A virus. By utilizing the same methodology one can redesign the adapter in order to expand the targets to include viral mRNA and (+) sense cRNA, which are essential to the viral life cycle, or other pathogens. This approach also has the potential to identify and quantify splice variants and base modifications, which are not practically measurable with current methods.


Subject(s)
Genome, Viral , Influenza A Virus, H1N1 Subtype/genetics , RNA, Viral/genetics , Sequence Analysis, RNA , Animals , Chick Embryo , Dogs , Madin Darby Canine Kidney Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...