Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Toxicol Rep ; 12: 397-403, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38590343

ABSTRACT

Investigating fine particulate matter (PM2.5) toxicity is crucial for health risk assessment and pollution control. This study explores the developmental toxicity of two PM2.5 sources: standard reference material 2786 (NIST, USA) and PM2.5 from Chakri Naruebodindra Medical Institute (CNMI, Thailand) located in the Bangkok Metropolitan area. Zebrafish embryos exposed to these samples exhibited embryonic mortality, with 50% lethal concentration (LC50) values of 1476 µg/mL for standard PM2.5 and 512 µg/mL for CNMI PM2.5. Morphological analysis revealed malformations, including pericardial and yolk sac edema, and blood clotting in both groups. Gene expression analysis highlighted source-specific effects. Standard PM2.5 downregulated sod1 and cat while upregulating gstp2. Inflammatory genes tnf-α and il-1b were upregulated, and nfkbi-αa was downregulated. Apoptosis-related genes bax, bcl-2, and casp3a were downregulated. CNMI PM2.5 consistently downregulated all examined genes. These findings underscore PM2.5 source variability's significance in biological system impact assessment, providing insights into pollutant-gene expression interactions. The study emphasizes the need for source-specific risk assessment and interventions to address PM2.5 exposure's health impacts effectively.

2.
Fluids Barriers CNS ; 21(1): 29, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38532486

ABSTRACT

BACKGROUND: Patients with Alzheimer's disease (AD) develop blood-brain barrier dysfunction to varying degrees. How aging impacts Aß pathology, blood-brain barrier function, and cognitive decline in AD remains largely unknown. In this study, we used 5xFAD mice to investigate changes in Aß levels, barrier function, and cognitive decline over time. METHODS: 5xFAD and wild-type (WT) mice were aged between 9.5 and 15.5 months and tested for spatial learning and reference memory with the Morris Water Maze (MWM). After behavior testing, mice were implanted with acute cranial windows and intravenously injected with fluorescent-labeled dextrans to assess their in vivo distribution in the brain by two-photon microscopy. Images were processed and segmented to obtain intravascular intensity, extravascular intensity, and vessel diameters as a measure of barrier integrity. Mice were sacrificed after in vivo imaging to isolate brain and plasma for measuring Aß levels. The effect of age and genotype were evaluated for each assay using generalized or cumulative-linked logistic mixed-level modeling and model selection by Akaike Information Criterion (AICc). Pairwise comparisons were used to identify outcome differences between the two groups. RESULTS: 5xFAD mice displayed spatial memory deficits compared to age-matched WT mice in the MWM assay, which worsened with age. Memory impairment was evident in 5xFAD mice by 2-threefold higher escape latencies, twofold greater cumulative distances until they reach the platform, and twice as frequent use of repetitive search strategies in the pool when compared with age-matched WT mice. Presence of the rd1 allele worsened MWM performance in 5xFAD mice at all ages but did not alter the rate of learning or probe trial outcomes. 9.5-month-old 15.5-month-old 5xFAD mice had twofold higher brain Aß40 and Aß42 levels (p < 0.001) and 2.5-fold higher (p = 0.007) plasma Aß40 levels compared to 9.5-month-old 5xFAD mice. Image analysis showed that vessel diameters and intra- and extravascular dextran intensities were not significantly different in 9.5- and 15.5-month-old 5xFAD mice compared to age-matched WT mice. CONCLUSION: 5xFAD mice continue to develop spatial memory deficits and increased Aß brain levels while aging. Given in vivo MP imaging limitations, further investigation with smaller molecular weight markers combined with advanced imaging techniques would be needed to reliably assess subtle differences in barrier integrity in aged mice.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Mice , Humans , Animals , Infant , Blood-Brain Barrier/metabolism , Mice, Transgenic , Alzheimer Disease/genetics , Memory Disorders , Disease Models, Animal , Amyloid beta-Peptides/metabolism
3.
BMC Pregnancy Childbirth ; 24(1): 197, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481196

ABSTRACT

BACKGROUND: Preterm labor is caused by multiple etiologies, including intra-amniotic infection and/or intra-amniotic inflammation, vascular disorders, cervical disease, decidual senescence, and breakdown of maternal-fetal tolerance. Accumulating evidence in vivo and in vitro has shown that an allergic reaction, including anaphylaxis, can induce preterm uterine contractions. This report describes a case of a pregnant woman who developed anaphylaxis and regular uterine contractions after the ingestion of a strawberry-coated biscuit. We also review the mechanism of allergic reaction (hypersensitivity)-induced preterm labor. Case presentation A 31-year-old woman (gravida 1, para 0) at 30+2 weeks of gestation was admitted to the labor and delivery unit with regular uterine contractions and anaphylactic symptoms after she ingested a strawberry-coated biscuit as a snack. The uterine contractions resolved after the treatment of anaphylaxis by administering antihistamines and epinephrine. The patient subsequently delivered at 39+3 weeks of gestation. The amniotic fluid profile showed no infection or inflammation. A postpartum skin-prick test confirmed a positive type 1 hypersensitivity reaction to the strawberry-coated biscuit. CONCLUSIONS: We report a case of anaphylaxis-induced uterine contractility in which uterine contractions subsided after the treatment of anaphylaxis. The absence of intra-amniotic infection and/or intra-amniotic inflammation and the cause of the anaphylaxis were confirmed. Our findings indicate that maternal allergic reactions may be one of the mechanisms of preterm labor.


Subject(s)
Anaphylaxis , Chorioamnionitis , Labor, Obstetric , Obstetric Labor, Premature , Premature Birth , Female , Infant, Newborn , Pregnancy , Humans , Adult , Anaphylaxis/chemically induced , Anaphylaxis/complications , Obstetric Labor, Premature/diagnosis , Uterine Contraction , Amniotic Fluid/metabolism , Inflammation , Chorioamnionitis/metabolism
4.
Biomol Ther (Seoul) ; 32(2): 205-213, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38298094

ABSTRACT

Hydroxychavicol, a primary active phenolic compound of betel leaves, previously inhibited bone loss in vivo by stimulating osteogenesis. However, the effect of hydroxychavicol on bone remodeling induced by osteoclasts is unknown. In this study, the anti-osteoclastogenic effects of hydroxychavicol and its mechanism were investigated in receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclasts. Hydroxychavicol reduced the number of tartrate resistance acid phosphatase (TRAP)-positive multinucleated, F-actin ring formation and bone-resorbing activity of osteoclasts differentiated from RAW264.7 cells in a concentration-dependent manner. Furthermore, hydroxychavicol decreased the expression of osteoclast-specific genes, including cathepsin K, MMP-9, and dendritic cell-specific transmembrane protein (DC-STAMP). For mechanistic studies, hydroxychavicol suppressed RANKL-induced expression of major transcription factors, including the nuclear factor of activated T-cells 1 (NFATc1), c-Fos, and c-Jun. At the early stage of osteoclast differentiation, hydroxychavicol blocked the phosphorylation of NF-κB subunits (p65 and Iκßα). This blockade led to the decrease of nuclear translocation of p65 induced by RANKL. In addition, the anti-osteoclastogenic effect of hydroxychavicol was confirmed by the inhibition of TRAP-positive multinucleated differentiation from human peripheral mononuclear cells (PBMCs). In conclusion, hydroxychavicol inhibits osteoclastogenesis by abrogating RANKL-induced NFATc1 expression by suppressing the NF-κB signaling pathway in vitro.

5.
Food Chem Toxicol ; 185: 114509, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336016

ABSTRACT

BACKGROUND: Centell-S, a water-soluble extract from Centella asiatica, is predominantly composed of madecassoside and asiaticoside, exceeding 80% w/w. Pursuing its development as an herbal medicinal product, Centell-S underwent sub-chronic toxicity assessment adhering to OECD GLP 408 standards. METHODS: In a study involving 100 Wistar rats, varying doses of Centell-S (50, 200, or 800 mg/kg/day) or a vehicle control were administered orally over 90 days. To evaluate Centell-S's safety profile, assessments included clinical observations, health examinations, clinical biochemistry analyses, and detailed anatomical pathology evaluations were conducted. RESULTS: Over the 90 days of treatment, the administration of Centell-S did not lead to any fatalities in the test animals. Clinical observations did not reveal any signs indicative of toxic effects. Notably, an increase in total white blood cell and lymphocyte counts was observed in both sexes, yet these levels returned to normal following a two-week discontinuation period post-treatment. CONCLUSIONS: Under the specific conditions of the OECD GLP 408, Repeated Dose 90-day Oral Toxicity Study in Rodents, the no observed adverse effect level (NOAEL) of Centell-S was 800 mg/kg/day. These findings are promising for the continued development of Centell-S as a phytopharmaceutical for clinical applications.


Subject(s)
Centella , Triterpenes , Rats , Male , Female , Animals , Rats, Wistar , Water , Plant Extracts/toxicity , Phytotherapy , Triterpenes/toxicity
6.
Res Pharm Sci ; 18(3): 279-291, 2023.
Article in English | MEDLINE | ID: mdl-37593164

ABSTRACT

Background and purpose: The GC-MS analysis reported n-hexadecanoic acid or palmitic acid as a major component of the ethanolic extract of Halymenia durvillei (HDET). This compound shows cytotoxic effects against various human cancer cells. The present study investigated the effect of HDET on the viability and proliferation of MDA-MB-231, a triple-negative breast cancer (TNBC) cell line. Experimental approach: Cell proliferation and cell cycle analysis were determined by flow cytometry and cell cycle regulatory protein expression levels were then determined by Western blotting. The presence of reactive oxygen species (ROS) was evaluated by dichlorofluorescein, followed by analyzing changes in gene expression of antioxidant enzymes using a real-time polymerase chain reaction. Findings/Results: HDET dose-dependently reduced cell viability with the 50% inhibitory concentration (IC50) of 269.4 ± 31.2 µg/mL at 24 h. The cell proliferation assays showed increased succinimidyl ester fluorescent intensity after treatment with ≥ 100 µg/mL of HDET, indicating the inhibition of cell proliferation. Cell cycle analysis using propidium iodide staining showed an increased percentage of cells in the G2/M phase. HDET also decreased the levels of cell cycle regulatory proteins including cyclin D1 and increased the level of p21. HDET promoted oxidative stress by increasing ROS levels along with the reduction of catalase expression. However, HDET did not induce apoptosis and caspase activation in TNBC cells. Conclusion and implications: These findings suggest that HDET which is rich in palmitic acid may serve as a potential therapeutic agent to target TNBC via arrest cell cycle progression at the G2/M phase.

7.
BMC Genomics ; 24(1): 405, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37468842

ABSTRACT

BACKGROUND: Preterm labor syndrome is associated with high perinatal morbidity and mortality, and intra-amniotic infection is a cause of preterm labor. The standard identification of causative microorganisms is based on the use of biochemical phenotypes, together with broth dilution-based antibiotic susceptibility from organisms grown in culture. However, such methods could not provide an accurate epidemiological aspect and a genetic basis of antimicrobial resistance leading to an inappropriate antibiotic administration. Hybrid genome assembly is a combination of short- and long-read sequencing, which provides better genomic resolution and completeness for genotypic identification and characterization. Herein, we performed a hybrid whole genome assembly sequencing of a pathogen associated with acute histologic chorioamnionitis in women presenting with PPROM. RESULTS: We identified Enterococcus faecium, namely E. faecium strain RAOG174, with several antibiotic resistance genes, including vancomycin and aminoglycoside. Virulence-associated genes and potential bacteriophage were also identified in this genome. CONCLUSION: We report herein the first study demonstrating the use of hybrid genome assembly and genomic analysis to identify E. faecium ST17 as a pathogen associated with acute histologic chorioamnionitis. The analysis provided several antibiotic resistance-associated genes/mutations and mobile genetic elements. The occurrence of E. faecium ST17 raised the awareness of the colonization of clinically relevant E. faecium and the carrying of antibiotic resistance. This finding has brought the advantages of genomic approach in the identification of the bacterial species and antibiotic resistance gene for E. faecium for appropriate antibiotic use to improve maternal and neonatal care.


Subject(s)
Chorioamnionitis , Enterococcus faecium , Gram-Positive Bacterial Infections , Obstetric Labor, Premature , Pregnancy , Humans , Female , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Chorioamnionitis/genetics , Chorioamnionitis/drug therapy , Enterococcus faecium/genetics , Genomics , Obstetric Labor, Premature/drug therapy , Drug Resistance, Microbial , Gram-Positive Bacterial Infections/microbiology
8.
Mar Drugs ; 21(6)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37367670

ABSTRACT

Due to the challenge of prostate cancer (PCa) management, there has been a surge in efforts to identify more safe and effective compounds that can modulate the epithelial-mesenchymal transition (EMT) for driving metastasis. Holothurin A (HA), a triterpenoid saponin isolated from Holothuria scabra, has now been characterized for its diverse biological activities. However, the mechanisms of HA in EMT-driven metastasis of human PCa cell lines has not yet been investigated. Moreover, runt-related transcription factor 1 (RUNX1) acts as an oncogene in prostate cancer, but little is known about its role in the EMT. Thus, the purpose of this study was to determine how RUNX1 influences EMT-mediated metastasis, as well as the potential effect of HA on EMT-mediated metastasis in endogenous and exogenous RUNX1 expressions of PCa cell lines. The results demonstrated that RUNX1 overexpression could promote the EMT phenotype with increased EMT markers, consequently driving metastatic migration and invasion in PC3 cell line through the activation of Akt/MAPK signaling pathways. Intriguingly, HA treatment could antagonize the EMT program in endogenous and exogenous RUNX1-expressing PCa cell lines. A decreasing metastasis of both HA-treated cell lines was evidenced through a downregulation of MMP2 and MMP9 via the Akt/P38/JNK-MAPK signaling pathway. Overall, our approach first demonstrated that RUNX1 enhanced EMT-driven prostate cancer metastasis and that HA was capable of inhibiting the EMT and metastatic processes and should probably be considered as a candidate for metastasis PCa treatment.


Subject(s)
Epithelial-Mesenchymal Transition , Prostatic Neoplasms , Male , Humans , Proto-Oncogene Proteins c-akt/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/pharmacology , Signal Transduction , Prostatic Neoplasms/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Cell Movement , Cell Line, Tumor , Neoplasm Metastasis , Neoplasm Invasiveness
9.
PLoS One ; 18(3): e0282785, 2023.
Article in English | MEDLINE | ID: mdl-36888618

ABSTRACT

BACKGROUND: The increased procoagulant platelets and platelet activation are associated with thrombosis in COVID-19. In this study, we investigated platelet activation in COVID-19 patients and their association with other disease markers. METHODS: COVID-19 patients were classified into three severity groups: no pneumonia, mild-to-moderate pneumonia, and severe pneumonia. The expression of P-selectin and activated glycoprotein (aGP) IIb/IIIa on the platelet surface and platelet-leukocyte aggregates were measured prospectively on admission days 1, 7, and 10 by flow cytometry. RESULTS: P-selectin expression, platelet-neutrophil, platelet-lymphocyte, and platelet-monocyte aggregates were higher in COVID-19 patients than in uninfected control individuals. In contrast, aGPIIb/IIIa expression was not different between patients and controls. Severe pneumonia patients had lower platelet-monocyte aggregates than patients without pneumonia and patients with mild-to-moderate pneumonia. Platelet-neutrophil and platelet-lymphocyte aggregates were not different among groups. There was no change in platelet-leukocyte aggregates and P-selectin expression on days 1, 7, and 10. aGPIIb/IIIa expression was not different among patient groups. Still, adenosine diphosphate (ADP)-induced aGPIIb/IIIa expression was lower in severe pneumonia than in patients without and with mild-to-moderate pneumonia. Platelet-monocyte aggregates exhibited a weak positive correlation with lymphocyte count and weak negative correlations with interleukin-6, D-dimer, lactate dehydrogenase, and nitrite. CONCLUSION: COVID-19 patients have higher platelet-leukocyte aggregates and P-selectin expression than controls, indicating increased platelet activation. Compared within patient groups, platelet-monocyte aggregates were lower in severe pneumonia patients.


Subject(s)
COVID-19 , P-Selectin , Humans , P-Selectin/metabolism , Monocytes/metabolism , COVID-19/metabolism , Blood Platelets/metabolism , Platelet Activation , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Flow Cytometry , Platelet Aggregation
10.
J Exp Pharmacol ; 15: 13-26, 2023.
Article in English | MEDLINE | ID: mdl-36699694

ABSTRACT

Background: The outbreak of COVID-19 has led to the suffering of people around the world, with an inaccessibility of specific and effective medication. Fingerroot extract, which showed in vitro anti-SARS-CoV-2 activity, could alleviate the deficiency of antivirals and reduce the burden of health systems. Aim of Study: In this study, we conducted an experiment in SARS-CoV-2-infected hamsters to determine the efficacy of fingerroot extract in vivo. Materials and Methods: The infected hamsters were orally administered with vehicle control, fingerroot extract 300 or 1000 mg/kg, or favipiravir 1000 mg/kg at 48 h post-infection for 7 consecutive days. The hamsters (n = 12 each group) were sacrificed at day 2, 4 and 8 post-infection to collect the plasma and lung tissues for analyses of viral output, lung histology and lung concentration of panduratin A. Results: All animals in treatment groups reported no death, while one hamster in the control group died on day 3 post-infection. All treatments significantly reduced lung pathophysiology and inflammatory mediators, PGE2 and IL-6, compared to the control group. High levels of panduratin A were found in both the plasma and lung of infected animals. Conclusion: Fingerroot extract was shown to be a potential of reducing lung inflammation and cytokines in hamsters. Further studies of the full pharmacokinetics and toxicity are required before entering into clinical development.

11.
J Perinat Med ; 51(6): 769-774, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-36503654

ABSTRACT

OBJECTIVES: Early diagnosis and treatment of intra-amniotic infection is crucial. Rapid pathogen identification allows for a definite diagnosis and enables proper management. We determined whether the 16S amplicon sequencing performed by a nanopore sequencing technique make possible rapid bacterial identification at the species level in intra-amniotic infection. METHODS: Five cases of confirmed intra-amniotic infection, determined by either cultivation or 16S rDNA polymerase chain reaction (PCR) Sanger sequencing, and 10 cases of women who underwent mid-trimester genetic amniocentesis were included. DNA was extracted from amniotic fluid and PCR was performed on the full-length 16S rDNA. Nanopore sequencing was performed. The results derived from nanopore sequencing were compared with those derived from cultivation and Sanger sequencing methods. RESULTS: Bacteria were successfully detected from amniotic fluid using nanopore sequencing in all cases of intra-amniotic infection. Nanopore sequencing identified additional bacterial species and polymicrobial infections. All patients who underwent a mid-trimester amniocentesis had negative cultures, negative 16S PCR Sanger sequencing and nanopore sequencing. Identification of the microorganisms using nanopore sequencing technique at the bacterial species level was achieved within 5-9 h from DNA extraction. CONCLUSIONS: This is the first study demonstrating that the nanopore sequencing technique is capable of rapid diagnosis of intra-amniotic infection using fresh amniotic fluid samples.


Subject(s)
Chorioamnionitis , Nanopore Sequencing , Nanopores , Pregnancy , Humans , Female , Chorioamnionitis/diagnosis , Chorioamnionitis/microbiology , Amniotic Fluid/microbiology , Amniocentesis , Bacteria
12.
Blood Adv ; 6(22): 5887-5897, 2022 11 22.
Article in English | MEDLINE | ID: mdl-35973191

ABSTRACT

Tissue factor (TF) pathway inhibitor (TFPI) is a Kunitz-type anticoagulation protein that inhibits activated factor VII (FVIIa)/TF complex. Incidentally, many different F7 gene variants, including TFPI-binding exosite mutations, have been reported in patients with congenital FVII deficiency and clinical bleeding variabilities. Here, TFPI-binding exosites (R147 and K192) on FVII zymogen were selectively disrupted to understand their roles in the pathogenesis of bleeding phenotypes. Expression of recombinant FVII variants (R147A, K192A, and R147A/K192A) demonstrated markedly reduced secretion of FVII owing to intracellular retention in the endoplasmic reticulum, as demonstrated by upregulation of the unfolded protein response genes in all FVII variants. FVII variants showed a similar FVII activation pattern and FVIIa amidolytic activity than FVII wild-type (WT). In contrast to FVII activation, R147A and K192A showed a 90% reduction in FX activation relative to WT, whereas the R147A/K192A variant demonstrated a 99% decrease in FX activation. The clotting time was markedly prolonged with R147A and K192A than WT, and no FVII coagulant activity was detected in R147A/K192A. In addition, the thrombin generation assay revealed a significant prolongation of lag time in all FVII variants. Our study explains how mutations of TFPI-binding exosites of FVII can lead to bleeding phenotypes in individuals carrying these aberrancies.


Subject(s)
Factor VII Deficiency , Humans , Factor VII Deficiency/genetics , Thromboplastin/metabolism , Factor VIIa/genetics , Mutation , Hemorrhage/genetics , Phenotype
13.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35215264

ABSTRACT

More than half of Thai patients with cancer take herbal preparations while receiving anticancer therapy. There is no systematic or scoping review on interactions between anticancer drugs and Thai herbs, although several research articles have that Thai herbs inhibit cytochrome P450 (CYP) or efflux transporter. Therefore, we gathered and integrated information related to the interactions between anticancer drugs and Thai herbs. Fifty-two anticancer drugs from the 2020 Thailand National List of Essential Medicines and 75 herbs from the 2020 Thai Herbal Pharmacopoeia were selected to determine potential anticancer drug-herb interactions. The pharmacological profiles of the selected anticancer drugs were reviewed and matched with the herbal pharmacological activities to determine possible interactions. A large number of potential anticancer drug-herb interactions were found; the majority involved CYP inhibition. Efflux transporter inhibition and enzyme induction were also found, which could interfere with the pharmacokinetic profiles of anticancer drugs. However, there is limited knowledge on the pharmacodynamic interactions between anticancer drugs and Thai herbs. Therefore, further research is warranted. Information regarding interactions between anticancer drugs and Thai herbs should provide as a useful resource to healthcare professionals in daily practice. It could enable the prediction of possible anticancer drug-herb interactions and could be used to optimize cancer therapy outcomes.

14.
Nitric Oxide ; 116: 1-6, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34371196

ABSTRACT

Nitrite anion (NO2-) is a circulating nitric oxide (NO) metabolite considered an endothelial function marker. Nitrite can be produced from nitrate (NO3-) secreted from plasma into saliva. The nitrate reductase of oral bacteria converts salivary nitrate to nitrite, which is swallowed and absorbed into circulation. In this study, we aimed to examine the relevance between these species' salivary and blood levels. We collected three whole saliva samples (unstimulated, paraffin-stimulated, and post-chlorhexidine mouthwash stimulated saliva) and blood from 75 healthy volunteers. We measured the nitrite and nitrate by the chemiluminescence method. The nitrite levels in stimulated saliva and post-mouthwash stimulated saliva exhibited weak correlations with blood nitrite. There was no correlation between nitrite in unstimulated saliva with blood nitrite. The baseline platelet activity, determined as P-selectin expression, negatively correlated with nitrite in plasma and post-mouthwash stimulated saliva. The salivary nitrate in all saliva samples showed correlations with its plasma levels. We conclude that nitrite in stimulated saliva correlates with blood nitrite.


Subject(s)
Nitrites/blood , Nitrites/metabolism , Saliva/chemistry , Adult , Chlorhexidine/pharmacology , Female , Humans , Male , Mastication , Mouthwashes/pharmacology , Nitrates/blood , Nitrates/metabolism , Paraffin , Saliva/metabolism
15.
Biol Pharm Bull ; 44(6): 830-837, 2021.
Article in English | MEDLINE | ID: mdl-34078815

ABSTRACT

BACKGROUND: Cisplatin is an effective chemotherapy but its main side effect, acute kidney injury, limits its use. Panduratin A, a bioactive compound extracted from Boesenbergia rotunda, shows several biological activities such as anti-oxidative effects. The present study investigated the nephroprotective effect of panduratin A on cisplatin-induced renal injury. METHODS: We investigated the effect of panduratin A on the toxicity of cisplatin in both mice and human renal cell cultures using RPTEC/TERT1 cells. RESULTS: The results demonstrated that panduratin A ameliorates cisplatin-induced renal toxicity in both mice and RPTEC/TERT1 cells by reducing apoptosis. Mice treated with a single intraperitoneal (i.p.) injection of cisplatin (20 mg/kg body weight (BW)) exhibited renal tubule injury and impaired kidney function as shown by histological examination and increased serum creatinine. Co-administration of panduratin A (50 mg/kg BW) orally improved kidney function and ameliorated renal tubule injury of cisplatin by inhibiting activation of extracellular signal-regulated kinase (ERK)1/2 and caspase 3. In human renal proximal tubular cells, cisplatin induced cell apoptosis by activating pro-apoptotic proteins (ERK1/2 and caspase 3), and reducing the anti-apoptotic protein (Bcl-2). These effects were significantly ameliorated by co-treatment with panduratin A. Interestingly, panduratin A did not alter intracellular accumulation of cisplatin. It did not alter the anti-cancer efficacy of cisplatin in either human colon or non-small cell lung cancer cell lines. CONCLUSIONS: The present study highlights panduratin A has a potential protective effect on cisplatin's nephrotoxicity.


Subject(s)
Acute Kidney Injury/drug therapy , Antineoplastic Agents/adverse effects , Chalcones/therapeutic use , Cisplatin/adverse effects , Protective Agents/therapeutic use , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Apoptosis , Cell Line , Chalcones/pharmacology , Humans , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Kidney Tubules, Proximal/cytology , Male , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Oxidative Stress/drug effects , Protective Agents/pharmacology
16.
Sci Rep ; 11(1): 6089, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33731842

ABSTRACT

Standard treatment for HIV infection involves a combination of antiretrovirals. Additionally, opportunistic infections in HIV infected patients require further antimicrobial medications that might cause drug-drug interactions (DDIs). The objective of this study was to to compare the recognition of DDIs between antiretrovirals and antimicrobials by three proprietary databases and evaluate their concordance. 114 items of antiretrovirals and antimicrobials from the National List of Essential Medicines of Thailand 2018 were used in the study. However, 21 items were not recognised by Micromedex, Drugs.com, and Liverpool HIV interactions. Only 93 items were available for the detection of potential DDIs by the three databases. Potential DDIs detected from the three databases included 292 pairs. Liverpool showed the highest number of DDIs with 285 pairs compared with 259 pairs by drugs.com and 133 pairs by Micromedex. Regarding the severity classifications, Liverpool reported 10% Contraindicated; Micromedex reported 14% contraindicated and 59% major; Drugs.com reported 21% major. The Fleiss' kappa agreements were fair to poor among the three databases, higher agreement was observed for DDIs classified as severe. This study highlights the need to harmonize the evaluation and interpretation of DDI risk in order to produce standardized information to support prescribers.


Subject(s)
Anti-Infective Agents/therapeutic use , Anti-Retroviral Agents/therapeutic use , Databases, Factual , HIV Infections/drug therapy , HIV-1 , Drug Interactions , Humans
17.
Metallomics ; 13(1)2021 01 16.
Article in English | MEDLINE | ID: mdl-33570137

ABSTRACT

Nickel, a heavy metal found in electronic wastes and fume from electronic cigarettes, induces neuronal cell death and is associated with neurocognitive impairment. Astrocytes are the first line of defense against nickel after entering the brain; however, the effects of nickel on astrocytes remain unknown. Herein, we investigated the effect of nickel exposure on cell survival and proliferation and the underlying mechanisms in U-87 MG human astrocytoma cells and primary human astrocytes. Intracellular nickel levels were elevated in U-87 MG cells in a dose- and time-dependent manner after exposure to nickel chloride. The median toxic concentrations of nickel in astrocytoma cells and primary human astrocytes were 600.60 and >1000 µM at 48 h post-exposure, respectively. Nickel exposure triggered apoptosis in concomitant with the decreased expression of anti-apoptotic B-cell lymphoma protein (Bcl-2) and increased caspase-3/7 activity. Nickel induced reactive oxygen species formation. Additionally, nickel suppressed astrocyte proliferation in a dose- and time-dependent manner by delaying G2 to M phase transition through the upregulation of cyclin B1 and p27 protein expression. These results indicate that nickel-induced cytotoxicity of astrocytes is mediated by the activation of apoptotic pathway and disruption of cell cycle regulation.


Subject(s)
Apoptosis/drug effects , Astrocytes/drug effects , Cell Cycle Checkpoints/drug effects , Nickel/metabolism , Astrocytes/cytology , Astrocytes/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cells, Cultured , Humans , Nickel/toxicity
18.
Pulm Pharmacol Ther ; 66: 101984, 2021 02.
Article in English | MEDLINE | ID: mdl-33338662

ABSTRACT

BACKGROUND: Nitrite is a physiologic nitric oxide (NO) derivative that can be bioactivated to NO. NO has been shown to attenuate airway inflammation and enhance the anti-inflammatory effect of corticosteroids in the animal model of asthma. Here, we aimed to investigate the efficacy and safety of inhaled sodium nitrite as add-on therapy with inhaled corticosteroid (ICS) in adult patients with persistent asthma. METHODS: In protocol 1, 10 asthmatic patients were administered a single dose of nebulized 15-mg sodium nitrite to assess safety, effect on lung function, and pharmacokinetics of nitrite within 120 min. In protocol 2, 20 patients were randomly assigned to a nitrite (15 mg twice daily) group or a placebo group to assess the efficacy over 12 weeks. The primary outcome was the forced expiratory volume in 1 s (FEV1). The secondary outcomes were other lung function parameters, unplanned asthma-related visits at the emergency department (ED) or outpatient department (OPD), admission days, asthma control test (ACT), and safety. RESULTS: Nebulized sodium nitrite had neither acute adverse effect nor effect on lung function test within 120 min. No blood pressure change was seen. At week 12, FEV1 increased in the nitrite group, whereas there was no change in the placebo group. There were 5 events of asthma exacerbation, 4 ED visits, and one unplanned OPD visit in the placebo group, but none of these was noted in the nitrite group. There was no change in ACT scores in both groups. No adverse event was reported during 12 weeks in the nitrite group. There was no change in methemoglobin levels and sputum inflammatory markers. CONCLUSION: From our pilot trial, nebulized sodium nitrite is safe in asthmatic patients, and shows the potential to reduce asthma exacerbation compared with placebo.


Subject(s)
Anti-Asthmatic Agents , Asthma , Administration, Inhalation , Anti-Asthmatic Agents/adverse effects , Asthma/drug therapy , Disease Progression , Humans , Sodium Nitrite/adverse effects
19.
J Immunotoxicol ; 17(1): 186-193, 2020 12.
Article in English | MEDLINE | ID: mdl-33075233

ABSTRACT

Cadmium (Cd) is accumulated in human astrocytes and induces the production of interleukin (IL)-6 and IL-8. Astrocytes are one of the major sources of chemokine C-C motif ligand 2 (CCL2; known as monocyte chemoattractant protein-1 [MCP-1]), in the brain. Elevated CCL2 levels are associated with cognitive impairment as well as the migration and invasion of glioblastoma cells. The present study hypothesized that non-toxic concentrations of Cd (as cadmium chloride [CdCl2]) could up-regulate CCL2 production in U-87 MG human glio-blastoma cells. The results showed that after exposure of the U-87 MG cells to CdCl2 at 1 and 10 µM, there was an up-regulation of CCL2 mRNA expression after 3 h of exposure and increased CCL2 secretion after 6 and 24 h. The study also found that inhibition of MAPK pathways, including ERK1/2, p38, and JNK by U0126, SB203580 and SP600125, respectively, reduced Cd-induced CCL2 secretion by the cells. Moreover, when cells were pretreated with Ro 32-0432 (an inhibitor of calcium-dependent PKC) and LY294002 (a PI3K inhibitor), this also resulted in a down-regulation of any Cd-induced CCL2 expression. Taken together, the results of this study allow for the conclusion to be made that CCL2 up-regulation in U-87 MG cells induced by Cd is mediated, in part, by an activation of MAPK, PI3K/Akt, and PKC pathways.


Subject(s)
Brain Neoplasms/metabolism , Cadmium/metabolism , Chemokine CCL2/metabolism , Glioblastoma/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase C/metabolism , Humans , Mitogen-Activated Protein Kinase 3 , Signal Transduction
20.
Asian Pac J Cancer Prev ; 21(7): 2029-2033, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32711429

ABSTRACT

OBJECTIVES: The study was to investigate anti-migration and invasion effects of astaxanthin (ATX), a natural carotenoid derivative distributed in marine environments, against A172 human glioblastoma cells. MATERIALS AND METHODS: Cell viability after ATX treatment was measured by MTT assays. Tumor cell migration and invasion were observed by scratch and Boyden chamber assays, respectively. Expression of MMP-2 and activity of MMP-9 were observed by immunoblotting and gelatin zymography, respectively. RESULTS: ATX up to 150 µM was not toxic to A172 cells at 48 h post-treatment. In contrast, ATX at 50 and 100 µM significantly decreased migration and invasion of A172 cells at 24 and 48 h post-treatment. Metastatic-reducing effect of ATX is associated with the reduction of MMP-2 and MMP-9 expressions in a dose-dependent manner. CONCLUSION: This finding indicated that ATX has anti-migration and invasion effects against human glioblastoma cells and might be applicable for the protection against metastasis of glioblastoma.


Subject(s)
Brain Neoplasms/pathology , Cell Movement , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Apoptosis , Brain Neoplasms/drug therapy , Brain Neoplasms/enzymology , Cell Proliferation , Gene Expression Regulation, Enzymologic , Glioblastoma/drug therapy , Glioblastoma/enzymology , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Neoplasm Invasiveness , Tumor Cells, Cultured , Xanthophylls/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...