Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Hyperthermia ; 40(1): 2222941, 2023.
Article in English | MEDLINE | ID: mdl-37344380

ABSTRACT

BACKGROUND: Neuroblastoma (NB) is the most common extracranial solid tumor of childhood, and high-risk disease is resistant to intensive treatment. Histotripsy is a focused ultrasound therapy under development for tissue ablation via bubble activity. The goal of this study was to assess outcomes of histotripsy ablation in a xenograft model of high-risk NB. METHODS: Female NCr nude mice received NGP-luciferase cells intrarenally. Under ultrasound image guidance, histotripsy pulses were applied over a distance of 4-6 mm within the tumors. Bioluminescence indicative of tumor viability was quantified before, immediately after, and 24 h after histotripsy exposure. Tumors were immunostained to assess apoptosis (TUNEL), endothelium (endomucin), pericytes (αSMA), hypoxia (pimonidazole), vascular endothelial growth factor A (VEGFA), and platelet-derived growth factor-B (PDGF-B). The apoptotic cytokine TNFα and its downstream effector cleaved caspase-3 (c-casp-3) were assessed with SDS-PAGE. RESULTS: Histotripsy induced a 50% reduction in bioluminescence compared to untreated controls, with an absence of nuclei in the treatment core surrounded by a dense rim of TUNEL-positive cells. Tumor regions not targeted by histotripsy also showed an increase in TUNEL staining density. Increased apoptosis in histotripsy samples was consistent with increases in TNFα and c-casp-3 relative to controls. Treated tumors exhibited a decrease in hypoxia, VEGF, PDGF-B, and pericyte coverage of vasculature compared to control samples. Further, increases in vasodilation were found in histotripsy-treated specimens. CONCLUSIONS: In addition to ablative effects, histotripsy was found to drive tumor apoptosis through intrinsic pathways, altering blood vessel architecture, and reducing hypoxia.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Neuroblastoma , Animals , Mice , Humans , Female , Vascular Endothelial Growth Factor A , Tumor Necrosis Factor-alpha , Heterografts , Mice, Nude , Neuroblastoma/therapy , Hypoxia , Apoptosis , High-Intensity Focused Ultrasound Ablation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...