Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 36(11)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38048637

ABSTRACT

Using atomistic simulations, we have investigated the transport and annihilation of skyrmions interacting with a funnel array under a current applied perpendicular to the funnel axis. We find that transport without annihilation is possible at low currents, when the motion is dominated by skyrmion-skyrmion interactions and skyrmions push each other through the funnel opening. Skyrmion annihilation occurs for higher currents when skyrmions in the upper half of the sample exert pressure on skyrmions in the bottom half of the sample due to the external current. Upon interacting with the funnel wall, the skyrmions undergo a size reduction that makes it easier for them to pass through the funnel opening. We find five phases as a function of the applied current and the size of the funnel opening: (i) pinned, (ii) transport without annihilation, (iii) transport with annihilation, (iv) complete annihilation, and (v) a reentrant pinning phase that only occurs for very narrow openings. Our findings provide insight into how to control skyrmion transport using funnel arrays by delineating regimes in which transport of skyrmions is possible as well as the conditions under which annihilation occurs.

2.
J Phys Condens Matter ; 51(1)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36272354

ABSTRACT

Using a particle based model, we investigate the skyrmion dynamical behavior in a channel where the upper wall contains divots of one depth and the lower wall contains divots of a different depth. Under an applied driving force, skyrmions in the channels move with a finite skyrmion Hall angle that deflects them toward the upper wall for -xdirection driving and the lower wall for +xdirection driving. When the upper divots have zero height, the skyrmions are deflected against the flat upper wall for -xdirection driving and the skyrmion velocity depends linearly on the drive. For +xdirection driving, the skyrmions are pushed against the lower divots and become trapped, giving reduced velocities and a nonlinear velocity-force response. When there are shallow divots on the upper wall and deep divots on the lower wall, skyrmions get trapped for both driving directions; however, due to the divot depth difference, skyrmions move more easily under -xdirection driving, and become strongly trapped for +xdirection driving. The preferred -xdirection motion produces what we call a Magnus diode effect since it vanishes in the limit of zero Magnus force, unlike the diode effects observed for asymmetric sawtooth potentials. We show that the transport curves can exhibit a series of jumps or dips, negative differential conductivity, and reentrant pinning due to collective trapping events. We also discuss how our results relate to recent continuum modeling on a similar skyrmion diode system.

3.
J Phys Condens Matter ; 33(30)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-33979789

ABSTRACT

We numerically examine the dynamics of a single skyrmion driven over triangular and honeycomb obstacle arrays at zero temperature. The skyrmion Hall angleθsk, defined as the angle between the applied external drive and the direction of the skyrmion motion, increases in quantized steps or continuously as a function of the applied drive. For the obstacle arrays studied in this work, the skyrmion exhibits two main directional locking angles ofθsk= -30° and -60°. We show that these directions are privileged due to the obstacle landscape symmetry, and coincide with channels along which the skyrmion may move with few or no obstacle collisions. Here we investigate how changes in the obstacle density can modify the skyrmion Hall angles and cause some dynamic phases to appear or grow while other phases vanish. This interesting behavior can be used to guide skyrmions along designated trajectories via regions with different obstacle densities. For fixed obstacle densities, we investigate the evolution of the lockedθsk= -30° and -60° phases as a function of the Magnus force, and discuss possibilities for switching between these phases using topological selection.

SELECTION OF CITATIONS
SEARCH DETAIL
...