Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(10): 4495-4501, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37141536

ABSTRACT

Understanding carrier trapping in solids has proven key to semiconductor technologies, but observations thus far have relied on ensembles of point defects, where the impact of neighboring traps or carrier screening is often important. Here, we investigate the capture of photogenerated holes by an individual negatively charged nitrogen-vacancy (NV) center in diamond at room temperature. Using an externally gated potential to minimize space-charge effects, we find the capture probability under electric fields of variable sign and amplitude shows an asymmetric-bell-shaped response with maximum at zero voltage. To interpret these observations, we run semiclassical Monte Carlo simulations modeling carrier trapping through a cascade process of phonon emission and obtain electric-field-dependent capture probabilities in good agreement with experiment. Because the mechanisms at play are insensitive to the characteristics of the trap, we anticipate the capture cross sections we observe─largely exceeding those derived from ensemble measurements─may also be present in materials platforms other than diamond.

2.
Sci Adv ; 8(1): eabl9402, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34995119

ABSTRACT

The application of color centers in wide-bandgap semiconductors to nanoscale sensing and quantum information processing largely rests on our knowledge of the surrounding crystalline lattice, often obscured by the countless classes of point defects the material can host. Here, we monitor the fluorescence from a negatively charged nitrogen-vacancy (NV−) center in diamond as we illuminate its vicinity. Cyclic charge state conversion of neighboring point defects sensitive to the excitation beam leads to a position-dependent stream of photo-generated carriers whose capture by the probe NV− leads to a fluorescence change. This "charge-to-photon" conversion scheme allows us to image other individual point defects surrounding the probe NV, including nonfluorescent "single-charge emitters" that would otherwise remain unnoticed. Given the ubiquity of color center photochromism, this strategy may likely find extensions to material systems other than diamond.

SELECTION OF CITATIONS
SEARCH DETAIL
...