Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 144(19): 194708, 2016 May 21.
Article in English | MEDLINE | ID: mdl-27208966

ABSTRACT

First principles calculations, scanning tunneling microscopy, and Auger spectroscopy experiments of the adsorption of Mg on Ag(111) substrate are conducted. This detailed study reveals that an atomic scale controlled deposition of a metallic Mg monolayer perfectly wets the silver substrate without any alloy formation at the interface at room temperature. A liquid-like behavior of the Mg species on the Ag substrate is highlighted as no dot formation is observed when coverage increases. Finally a layer-by-layer growth mode of Mg on Ag(111) can be predicted, thanks to density functional theory calculations as observed experimentally.

2.
J Phys Condens Matter ; 24(31): 314211, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22820837

ABSTRACT

In this paper we report on several structures of silicene, the analog of graphene for silicon, on the silver surfaces Ag(100), Ag(110) and Ag(111). Deposition of Si produces honeycomb structures on these surfaces. In particular, we present an extensive theoretical study of silicene on Ag(111) for which several recent experimental studies have been published. Different silicene structures were obtained only by varying the silicon coverage and/or its atomic arrangement. All the structures studied show that silicene is buckled, with a Si-Si nearest neighbor distance varying between 2.28 and 2.5 Å. Due to the buckling in the silicene sheet, the apparent (lateral) Si-Si distance can be as low as 1.89 Å. We also found that for a given coverage and symmetry, one may observe different scanning tunneling microscopy images corresponding to structures that differ by only a translation.

3.
J Phys Condens Matter ; 22(4): 045004, 2010 Feb 03.
Article in English | MEDLINE | ID: mdl-21386306

ABSTRACT

We report results of a computational investigation, based on density functional theory, of silicon self-assembled nano-ribbons (Si NRs) on Ag(110). These NRs present a honeycomb-like structure arched on the substrate and forming a closed-packed structure. The calculated STM images match the experimental ones, hinting to a possible new Si structure, mediated by the Ag substrate. The observed new electronic states near the Fermi level were reproduced by the calculations and attributed to a confinement/hybridization tandem.

4.
Nano Lett ; 8(8): 2299-304, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18624391

ABSTRACT

Silicon oxide nanowires hold great promise for functional nanoscale electronics. Here, we investigate the oxidation of straight, massively parallel, metallic Si nanowires. We show that the oxidation process starts at the Si NW terminations and develops like a burning match. While the spectroscopic signatures on the virgin, metallic part, are unaltered we identify four new oxidation states on the oxidized part, which show a gap opening, thus revealing the formation of a transverse internal nanojunction.

5.
Nano Lett ; 8(1): 271-5, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18092826

ABSTRACT

In the quest of nano-objects for future electronics, silicon nanowires could possibly take over carbon nanotubes. Here we show the growth by self-organization of straight, massively parallel silicon nanowires having a width of 1.6 nm, which are atomically perfect and highly metallic conductors. Surprisingly, these silicon nanowires display a strong symmetry breaking across their widths with two chiral species that self-assemble in large left-handed and right-handed magnetic-like domains.

SELECTION OF CITATIONS
SEARCH DETAIL
...