Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 145(3): 245-257, 2018 05.
Article in English | MEDLINE | ID: mdl-29315582

ABSTRACT

Peripheral myelin protein 22 (PMP22) is a component of compact myelin in the peripheral nervous system. The amount of PMP22 in myelin is tightly regulated, and PMP22 over or under-expression cause Charcot-Marie-Tooth 1A (CMT1A) and Hereditary Neuropathy with Pressure Palsies (HNPP). Despite the importance of PMP22, its function remains largely unknown. It was reported that PMP22 interacts with the ß4 subunit of the laminin receptor α6ß4 integrin, suggesting that α6ß4 integrin and laminins may contribute to the pathogenesis of CMT1A or HNPP. Here we asked if the lack of α6ß4 integrin in Schwann cells influences myelin stability in the HNPP mouse model. Our data indicate that PMP22 and ß4 integrin may not interact directly in myelinating Schwann cells, however, ablating ß4 integrin delays the formation of tomacula, a characteristic feature of HNPP. In contrast, ablation of integrin ß4 worsens nerve conduction velocities and non-compact myelin organization in HNPP animals. This study demonstrates that indirect interactions between an extracellular matrix receptor and a myelin protein influence the stability and function of myelinated fibers.


Subject(s)
Arthrogryposis/metabolism , Hereditary Sensory and Motor Neuropathy/metabolism , Integrin alpha6beta4/metabolism , Schwann Cells/metabolism , Animals , Arthrogryposis/pathology , Hereditary Sensory and Motor Neuropathy/pathology , Mice , Mice, Knockout , Myelin Proteins/metabolism , Myelin Sheath/metabolism , Myelin Sheath/pathology , Schwann Cells/pathology
2.
Brain ; 135(Pt 12): 3551-66, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23250879

ABSTRACT

Charcot-Marie-Tooth disease type 1B is caused by mutations in myelin protein zero. R98C mice, an authentic model of early onset Charcot-Marie-Tooth disease type 1B, develop neuropathy in part because the misfolded mutant myelin protein zero is retained in the endoplasmic reticulum where it activates the unfolded protein response. Because oral curcumin, a component of the spice turmeric, has been shown to relieve endoplasmic reticulum stress and decrease the activation of the unfolded protein response, we treated R98C mutant mice with daily gastric lavage of curcumin or curcumin derivatives starting at 4 days of age and analysed them for clinical disability, electrophysiological parameters and peripheral nerve morphology. Heterozygous R98C mice treated with curcumin dissolved in sesame oil or phosphatidylcholine curcumin performed as well as wild-type littermates on a rotarod test and had increased numbers of large-diameter axons in their sciatic nerves. Treatment with the latter two compounds also increased compound muscle action potential amplitudes and the innervation of neuromuscular junctions in both heterozygous and homozygous R98C animals, but it did not improve nerve conduction velocity, myelin thickness, G-ratios or myelin period. The expression of c-Jun and suppressed cAMP-inducible POU (SCIP)-transcription factors that inhibit myelination when overexpressed-was also decreased by treatment. Consistent with its role in reducing endoplasmic reticulum stress, treatment with curcumin dissolved in sesame oil or phosphatidylcholine curcumin was associated with decreased X-box binding protein (XBP1) splicing. Taken together, these data demonstrate that treatment with curcumin dissolved in sesame oil or phosphatidylcholine curcumin improves the peripheral neuropathy of R98C mice by alleviating endoplasmic reticulum stress, by reducing the activation of unfolded protein response and by promoting Schwann cell differentiation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Cell Differentiation/drug effects , Charcot-Marie-Tooth Disease , Curcumin/therapeutic use , Myelin P0 Protein/genetics , Schwann Cells/drug effects , Action Potentials/drug effects , Action Potentials/genetics , Age Factors , Analysis of Variance , Animals , Animals, Newborn , Arginine/genetics , COS Cells/drug effects , Cells, Cultured , Charcot-Marie-Tooth Disease/drug therapy , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Chlorocebus aethiops , Cysteine/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Models, Animal , Early Growth Response Protein 2/metabolism , Electric Stimulation/methods , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Green Fluorescent Proteins/genetics , Humans , Mice , Mice, Transgenic , Motor Activity/drug effects , Motor Activity/genetics , Muscle Strength/drug effects , Muscle Strength/genetics , Mutation/genetics , Myelin P0 Protein/metabolism , Neuromuscular Junction/drug effects , Neuromuscular Junction/genetics , Octamer Transcription Factor-6/metabolism , Protein Folding/drug effects , Proto-Oncogene Proteins c-jun/metabolism , Regulatory Factor X Transcription Factors , Rotarod Performance Test , Transcription Factors/genetics , Transcription Factors/metabolism , Transfection , X-Box Binding Protein 1
3.
J Am Chem Soc ; 129(51): 16175-82, 2007 Dec 26.
Article in English | MEDLINE | ID: mdl-18044899

ABSTRACT

Reactivity-based selection strategies have been used to enrich combinatorial libraries for encoded biocatalysts having revised substrate specificity or altered catalytic activity. This approach can also assist in artificial evolution of enzyme catalysis from protein templates without bias for predefined catalytic sites. The prevalence of covalent intermediates in enzymatic mechanisms suggests the universal utility of the covalent complex as the basis for selection. Covalent selection by phosphonate ester exchange was applied to a phage display library of antibody variable fragments (scFv) to sample the scope and mechanism of chemical reactivity in a naive molecular library. Selected scFv segregated into structurally related covalent and noncovalent binders. Clones that reacted covalently utilized tyrosine residues exclusively as the nucleophile. Two motifs were identified by structural analysis, recruiting distinct Tyr residues of the light chain. Most clones employed Tyr32 in CDR-L1, whereas a unique clone (A.17) reacted at Tyr36 in FR-L2. Enhanced phosphonylation kinetics and modest amidase activity of A.17 suggested a primitive catalytic site. Covalent selection may thus provide access to protein molecules that approximate an early apparatus for covalent catalysis.


Subject(s)
Proteins/metabolism , Catalysis , Models, Molecular , Proteins/chemistry , Substrate Specificity
4.
J Am Soc Nephrol ; 17(7): 1979-85, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16762989

ABSTRACT

It was shown previously that an N-terminal fragment (nM60) that encompasses amino acid residues 1 to 563 of megalin could induce active Heymann nephritis (AHN) as efficiently as the native protein. For delineation of a minimal structure within this fragment that is sufficient to induce AHN, smaller protein fragments that encompass residues 1 to 236 (L6), 1 to 195 (L5), 1 to 156 (L4), and 1 to 120 (L3), representing successive C-terminal truncations within ligand-binding repeats of nM60, were cloned and produced in a baculovirus insect cell expression system. Protein fragments L4, L5, and L6 clearly were glycosylated. All four fragments stimulated proliferation of megalin-sensitized lymph node cells and induced high-titer anti-megalin autoantibodies in Lewis rats. A full-blown disease, as assessed by severity of proteinuria, was observed in rats that were immunized with L6 and L5, whereas animals that were immunized with L4 and L3 developed only mild disease. The proteinuria levels correlated with staining for complement (C3, C5b-9) and IgG1 isotype in glomerular immune deposits. The results suggest that one or more molecular determinants on the region that comprises amino acid residues 157 to 236 contribute to the induction of a full-blown form of AHN. Study of the structure, conformation, and posttranslational modifications of these determinants could provide greater insight into the molecular correlates of immunopathogenesis in this disease model.


Subject(s)
Autoantibodies/metabolism , Glomerulonephritis, Membranous/immunology , Low Density Lipoprotein Receptor-Related Protein-2/immunology , Peptide Fragments/immunology , Animals , Disease Models, Animal , Epitopes/immunology , Female , Immunization , Kidney/immunology , Low Density Lipoprotein Receptor-Related Protein-2/chemistry , Lymph Nodes/cytology , Rats , Rats, Inbred Lew
SELECTION OF CITATIONS
SEARCH DETAIL
...