Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(18)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34577095

ABSTRACT

We present the magnetic properties of the metal-organic framework {[CoCxAPy]·2.15 H2O}n (Cx = bis(carboxypropyl)tetramethyldisiloxane; APy = 4,4`-azopyridine) (1) that builds up from the stacking of 2D coordination polymers. The 2D-coordination polymer in the bc plane is formed by the adjacent bonding of [CoCxAPy] 1D two-leg ladders with Co dimer rungs, running parallel to the c-axis. The crystal packing of 2D layers shows the presence of infinite channels running along the c crystallographic axis, which accommodate the disordered solvate molecules. The Co(II) is six-coordinated in a distorted octahedral geometry, where the equatorial plane is occupied by four carboxylate oxygen atoms. Two nitrogen atoms from APy ligands are coordinated in apical positions. The single-ion magnetic anisotropy has been determined by low temperature EPR and magnetization measurements on an isostructural compound {[Zn0.8Co0.2CxAPy]·1.5 CH3OH}n (2). The results show that the Co(II) ion has orthorhombic anisotropy with the hard-axis direction in the C2V main axis, lying the easy axis in the distorted octahedron equatorial plane, as predicted by the ab initio calculations of the g-tensor. Magnetic and heat capacity properties at very low temperatures are rationalized within a S* = 1/2 magnetic dimer model with anisotropic antiferromagnetic interaction. The magnetic dimer exhibits slow relaxation of the magnetization (SMM) below 6 K in applied field, with a tlf ≈ 2 s direct process at low frequencies, and an Orbach process at higher frequencies with U/kB = 6.7 ± 0.5 K. This compound represents a singular SMM MOF built-up of Co-dimers with an anisotropic exchange interaction.

2.
Dalton Trans ; 48(18): 5909-5922, 2019 May 07.
Article in English | MEDLINE | ID: mdl-30638234

ABSTRACT

Three dimanganese(iii) complexes have been synthesised and fully characterised by standard spectroscopic methods and spectroelectrochemistry. Each MnIII ion is chelated by a salen type ligand (H2L), but there is variation in the bridging group: LMn(OOCCH[double bond, length as m-dash]CHCOO)MnL, LMn(OOCC6H4COO)MnL, and LMn(OOCC6H4C6H4COO)MnL. X-ray diffraction revealed an axial compression of each six-coordinate high-spin d4 MnIII ion, which is a Jahn-Teller-active ion. Temperature dependent magnetic susceptibility and variable temperature-variable field (VTVH) magnetisation measurements, as well as high-frequency and -field EPR (HFEPR) spectroscopy were used to accurately describe the magnetic properties of the complexes, not only the single-ion spin Hamiltonian parameters: g-values and zero-field splitting (ZFS) parameters D and E, but also the exchange interaction constant J between the two ions, which has been seldom determined for a di-MnIII complex, particularly when there is more than a single bridging atom. Quantum chemical calculations reproduced well the electronic and geometric structure of these unusual complexes, and, in particular, their electronic absorption spectra along with the spin Hamiltonian and exchange parameters.

3.
Dalton Trans ; 46(35): 11817-11829, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28848942

ABSTRACT

A new high-spin d4 roughly trigonal-bipyramidal (TBP) manganese(iii) complex with a salen type ligand (H2L), namely MnL(NCS)·0.4H2O, has been synthesised and characterised by elemental analysis, ESI mass spectrometry, IR and UV-vis spectroscopy, and spectroelectrochemistry. X-ray diffraction analysis revealed an axial compression of the approximate TBP. Temperature dependent magnetic susceptibility and variable-temperature variable-field (VTVH) magnetisation measurements, as well as high-frequency and -field EPR (HFEPR) spectroscopy, were used to accurately describe the magnetic properties of this complex and, in particular, determine the spin Hamiltonian parameters: g-values and the zero-field splitting (ZFS) parameters D and E. The HFEPR spectra allowed the extraction of fourth order ZFS parameters. Quantum chemical calculations reproduced well the electronic and geometric structures of this unusual complex and, in particular, its electronic absorption spectrum along with the spin Hamiltonian parameters.

4.
Article in English | MEDLINE | ID: mdl-25437843

ABSTRACT

A new diamine, (dimethylsilanediyl)bis(methylene)bis(4-aminobenzoate) (1), containing dimethylsilane spacer, was prepared by the condensation of p-aminobenzoic acid with bis(chloromethyl)dimethylsilane. This was subsequently reacted with salicylaldehyde, 3-hydroxy-salicylaldehyde, and 3-methoxy-salicyladehyde, when corresponding Schiff bases (E)-(dimethylsilanediyl)bis(methylene)bis(4-((E)-(2-hydroxybenzilidene)amino)benzoate (2), (E)-(dimethylsilanediyl)bis(methylene)bis(4-((E)-(2-hydroxybenzilidene)amino)benzoate (3), and (E)-(dimethylsilanediyl)bis(methylene) bis(4-((E)-(2-hydroxy-3-methoxybenzilidene)amino)benzoate (4), respectively were formed. All the obtained compounds were structurally characterized by spectral (FT-IR, (1)HNMR, (13)CNMR) analyses and single crystal X-ray diffraction. Photophysical studies revealed that the new prepared Schiff bases are good UV light absorbing and fluorescent materials. Thus, they exhibit strong UV/Vis-absorption at 250-400nm and violet or orange emission, in sensitive dependence on the polarity of the solvents and the nature of the substituent (H, OH and OCH3) at the aromatic ring. The antimicrobial activity of these compounds was first studied in vitro by the disk diffusion assay against two species of bacteria and three fungi. The minimum inhibitory concentration was then determined with the reference of standard compounds. The results displayed that Schiff bases 3 and 4 having hydroxy- and methoxy-substituents on the aromatic ring were better inhibitors of both types of species (bacteria and fungi) than standard compounds, Caspofungin and Kanamycin.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Azo Compounds/chemistry , Azo Compounds/pharmacology , Organosilicon Compounds/chemistry , Organosilicon Compounds/pharmacology , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Aldehydes/chemical synthesis , Aldehydes/chemistry , Aldehydes/pharmacology , Anti-Infective Agents/chemical synthesis , Azo Compounds/chemical synthesis , Bacteria/drug effects , Bacterial Infections/drug therapy , Crystallography, X-Ray , Diamines/chemical synthesis , Diamines/chemistry , Diamines/pharmacology , Fungi/drug effects , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Mycoses/drug therapy , Organosilicon Compounds/chemical synthesis , Silanes/chemical synthesis , Silanes/chemistry , Silanes/pharmacology , Spectroscopy, Fourier Transform Infrared , Thiosemicarbazones/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...