Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Cancer Res ; 70(23): 9991-10001, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21118961

ABSTRACT

Identifying the functions of proteins, which associate with specific subnuclear structures, is critical to understanding eukaryotic nuclear dynamics. Sp100 is a prototypical protein of ND10/PML nuclear bodies, which colocalizes with Daxx and the proto-oncogenic PML. Sp100 isoforms contain SAND, PHD, Bromo, and HMG domains and are highly sumoylated, all characteristics suggestive of a role in chromatin-mediated gene regulation. A role for Sp100 in oncogenesis has not been defined previously. Using selective Sp100 isoform-knockdown approaches, we show that normal human diploid fibroblasts with reduced Sp100 levels rapidly senesce. Subsequently, small rapidly dividing Sp100 minus cells emerge from the senescing fibroblasts and are found to be highly tumorigenic in nude mice. The derivation of these tumorigenic cells from the parental fibroblasts is confirmed by microsatellite analysis. The small rapidly dividing Sp100 minus cells now also lack ND10/PML bodies, and exhibit genomic instability and p53 cytoplasmic sequestration. They have also activated MYC, RAS, and TERT pathways and express mesenchymal to epithelial transdifferentiation (MET) markers. Reintroduction of expression of only the Sp100A isoform is sufficient to maintain senescence and to inhibit emergence of the highly tumorigenic cells. Global transcriptome studies, quantitative PCR, and protein studies, as well as immunolocalization studies during the course of the transformation, reveal that a transient expression of stem cell markers precedes the malignant transformation. These results identify a role for Sp100 as a tumor suppressor in addition to its role in maintaining ND10/PML bodies and in the epigenetic regulation of gene expression.


Subject(s)
Antigens, Nuclear/genetics , Autoantigens/genetics , Embryonic Stem Cells/metabolism , Fibroblasts/metabolism , Tumor Suppressor Proteins/genetics , Animals , Antigens, Nuclear/metabolism , Autoantigens/metabolism , Blotting, Western , Cell Transformation, Neoplastic/genetics , Cells, Cultured , Cellular Senescence/genetics , Epithelial-Mesenchymal Transition/genetics , Fibroblasts/cytology , Gene Expression Profiling , HEK293 Cells , Humans , Male , Mice , Mice, Nude , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Nuclear Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Promyelocytic Leukemia Protein , Proto-Oncogene Proteins c-myc/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/metabolism , Transplantation, Heterologous , Tumor Suppressor Proteins/metabolism , ras Proteins/metabolism
3.
J Virol ; 83(10): 5168-80, 2009 May.
Article in English | MEDLINE | ID: mdl-19279115

ABSTRACT

Cells have intrinsic defenses against virus infection, acting before the innate or the adaptive immune response. Preexisting antiviral proteins such as PML, Daxx, and Sp100 are stored in specific nuclear domains (ND10). In herpes simplex virus type 1 (HSV-1), the immediate-early protein ICP0 serves as a counterdefense through degradation of the detrimental protein PML. We asked whether interferon (IFN)-upregulated Sp100 is similarly antagonized by ICP0 in normal human fibroblasts by using a selective-knockdown approach. We find that of the four Sp100 isoforms, the three containing a SAND domain block the transcription of HSV-1 proteins ICP0 and ICP4 at the promoter level and that IFN changes the differential splicing of the Sp100 transcript in favor of the inhibitor Sp100C. At the protein level, ICP0 activity does not lead to the hydrolysis of any of the Sp100 isoforms. The SAND domain-containing isoforms are not general inhibitors of viral promoters, as the activity of the major immediate-early cytomegalovirus promoter is not diminished, whereas the long terminal repeat of a retrovirus, like the ICP0 promoter, is strongly inhibited. Since we could not find a specific promoter region in the ICP0 gene that responds to the SAND domain-containing isoforms, we questioned whether Sp100 could act through other antiviral proteins such as PML. We find that all four Sp100 isoforms stabilize ND10 and protect PML from ICP0-based hydrolysis. Loss of either all PML isoforms or all Sp100 isoforms reduces the opposite constituent ND10 protein, suggesting that various interdependent mechanisms of ND10-based proteins inhibit virus infection at the immediate-early level.


Subject(s)
Antigens, Nuclear/metabolism , Autoantigens/metabolism , Genes, Immediate-Early , Herpesvirus 1, Human/genetics , Immediate-Early Proteins/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Cell Line , Gene Expression Regulation, Viral , Gene Knockdown Techniques , Herpesvirus 1, Human/metabolism , Humans , Interferons/metabolism , Promoter Regions, Genetic , Promyelocytic Leukemia Protein , Protein Isoforms/metabolism , Protein Splicing , Transcription, Genetic , Up-Regulation
4.
J Virol ; 80(16): 8019-29, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16873258

ABSTRACT

Nuclear domains called ND10 or PML nuclear bodies contain interferon (IFN)-upregulated proteins like PML and Sp100. Paradoxically, herpes simplex virus 1 (HSV-1) begins its transcriptional cascade at aggregates of ND10-associated proteins, which in turn are destroyed by the HSV-1 immediate-early protein ICP0. While PML is essential in the formation of ND10, the function of Sp100 in the cells' defense against viral infection is unknown. In this study we investigated the potential antiviral effect of IFN-beta-induced Sp100. We found that IFN-beta treatment leads to a differential accumulation of four Sp100 isoforms in different cell lines. Using an HEK293 cell line derivative, 293-S, producing no detectable amounts of Sp100 even after IFN exposure, we analyzed individual Sp100 isoforms for their effect on HSV-1 infection. Sp100 isoforms B, C, and HMG, but not Sp100A, suppressed ICP0 and ICP4 early after infection. Isoforms B, C, and HMG suppressed expression from the ICP0 promoter in transient transfection, whereas Sp100A enhanced expression. Moreover, Sp100A localized in ND10, whereas the repressive isoforms were either dispersed within the nucleus or, at unphysiologically higher expression levels, formed new aggregates. The repressive activity was dependent on an intact SAND domain, since Sp100B bearing a W655Q mutation in the SAND domain lost this repressive activity and accumulated in ND10. Using RNA interference to knock down the repressive Sp100 isoforms B, C, and HMG, we find that they are an essential part of the IFN-beta-mediated suppression of ICP0 expression. These data suggest that repression by the Sp100 isoforms B, C, and HMG takes place outside of ND10 and raise the possibility that viral genomes at Sp100A accumulations are more likely to start their transcription program because of a more permissive local environment.


Subject(s)
Antigens, Nuclear/physiology , Autoantigens/physiology , Gene Expression Regulation, Viral , Herpesvirus 1, Human/drug effects , Immediate-Early Proteins/genetics , Interferon-beta/pharmacology , Nuclear Proteins/physiology , Repressor Proteins/physiology , Antigens, Nuclear/genetics , Autoantigens/genetics , Cell Line , Down-Regulation , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/metabolism , Humans , Immediate-Early Proteins/metabolism , Nuclear Proteins/agonists , Nuclear Proteins/genetics , Promoter Regions, Genetic , Protein Isoforms/agonists , Protein Isoforms/genetics , Protein Isoforms/physiology , Protein Structure, Tertiary , RNA Interference , Repressor Proteins/agonists , Repressor Proteins/genetics , Ubiquitin-Protein Ligases/genetics
5.
J Cell Sci ; 117(Pt 17): 3807-20, 2004 Aug 01.
Article in English | MEDLINE | ID: mdl-15252119

ABSTRACT

Placing regulatory proteins into different multiprotein complexes should modify key cellular processes. Here, we show that the transcription repressor Daxx and the SWI/SNF protein ATRX are both associated with two intranuclear domains: ND10/PML bodies and heterochromatin. The accumulation of ATRX at nuclear domain 10 (ND10) was mediated by its interaction with the N-terminus of Daxx. Binding of this complex to ND10 was facilitated by the interaction of the Daxx C-terminus with SUMOylated promyelocytic leukemia protein (PML). Although ATRX was present at heterochromatin during the entire cell cycle, Daxx was actively recruited to this domain at the end of S-phase. The FACT-complex member structure-specific recognition protein 1 (SSRP1) accumulated at heterochromatin simultaneously with Daxx and accumulation of both proteins depended on ATRX phosphorylation. Both Daxx and SSRP1 were released from heterochromatin early in G(2) phase and Daxx was recruited back to ND10, indicating that both proteins localize to heterochromatin during a very short temporal window of the cell cycle. ATRX seems to assemble a repression multiprotein complex including Daxx and SSRP1 at heterochromatin during a specific stage of the cell cycle, whereas Daxx functions as an adapter for ATRX accumulation at ND10. A potential functional consequence of Daxx accumulation at heterochromatin was found in the S- to G(2)-phase transition. In Daxx(-/-) cells, S-phase was accelerated and the propensity to form double nuclei was increased, functional changes that could be rescued by Daxx reconstitution and that might be the basis for the developmental problems observed in Daxx knockout animals.


Subject(s)
Carrier Proteins/physiology , DNA Helicases/metabolism , Heterochromatin/physiology , Intracellular Signaling Peptides and Proteins/physiology , Nuclear Proteins/metabolism , Nuclear Proteins/physiology , Animals , Antimetabolites/pharmacology , Bromodeoxyuridine/pharmacology , Cell Cycle , Cell Line , Cell Nucleus/metabolism , Cells, Cultured , Chromatin/metabolism , Co-Repressor Proteins , G2 Phase , Heterochromatin/metabolism , Immunoprecipitation , Mice , Mice, Knockout , Mice, Transgenic , Models, Biological , Molecular Chaperones , Neoplasm Proteins/metabolism , Phosphorylation , Promyelocytic Leukemia Protein , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Retroviridae/genetics , S Phase , Time Factors , Transcription Factors/metabolism , Tumor Suppressor Proteins , X-linked Nuclear Protein
6.
J Virol ; 76(15): 7705-12, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12097584

ABSTRACT

Human cytomegalovirus (HCMV) starts immediate-early transcription at nuclear domains 10 (ND10), forming a highly dynamic immediate transcript environment at this nuclear site. The reason for this spatial correlation remains enigmatic, and the mechanism for induction of transcription at ND10 is unknown. We investigated whether tegument-based transactivators are involved in the specific intranuclear location of HCMV. Here, we demonstrate that the HCMV transactivator tegument protein pp71 accumulates at ND10 before the production of immediate-early proteins. Intracellular trafficking of pp71 is facilitated through binding to a coiled-coil region of Daxx. The C-terminal domain of Daxx then interacts with SUMO-modified PML, resulting in the deposition of pp71 at ND10. In Daxx-deficient cells, pp71 does not accumulate at ND10, proving in vivo the necessity of Daxx for pp71 deposition. Also, HCMV forms immediate transcript environments at sites other than ND10 in Daxx-deficient cells, and so does the HCMV pp71 knockout mutant UL82(-/-) in normal cells. This result strongly suggests that pp71 and Daxx are essential for HCMV transcription at ND10. Lack of Daxx had the effect of reducing the infection rate. We conclude that the tegument transactivator pp71 facilitates viral genome deposition and transcription at ND10, possibly priming HCMV for more efficient productive infection.


Subject(s)
Carrier Proteins/metabolism , Cell Nucleus/metabolism , Cytomegalovirus/pathogenicity , Intracellular Signaling Peptides and Proteins , Nuclear Proteins/metabolism , Viral Proteins/metabolism , Adaptor Proteins, Signal Transducing , Animals , COS Cells , Cell Line , Co-Repressor Proteins , Cytomegalovirus/physiology , Gene Expression Regulation, Viral , Humans , Mice , Molecular Chaperones , Transcription, Genetic , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...