Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37298333

ABSTRACT

The protein family of aldehyde dehydrogenases (ALDH) encompasses nineteen members. The ALDH1 subfamily consists of enzymes with similar activity, having the capacity to neutralize lipid peroxidation products and to generate retinoic acid; however, only ALDH1A1 emerges as a significant risk factor in acute myeloid leukemia. Not only is the gene ALDH1A1 on average significantly overexpressed in the poor prognosis group at the RNA level, but its protein product, ALDH1A1 protects acute myeloid leukemia cells from lipid peroxidation byproducts. This capacity to protect cells can be ascribed to the stability of the enzyme under conditions of oxidant stress. The capacity to protect cells is evident both in vitro, as well as in mouse xenografts of those cells, shielding cells effectively from a number of potent antineoplastic agents. However, the role of ALDH1A1 in acute myeloid leukemia has been unclear in the past due to evidence that normal cells often have higher aldehyde dehydrogenase activity than leukemic cells. This being true, ALDH1A1 RNA expression is significantly associated with poor prognosis. It is hence imperative that ALDH1A1 is methodically targeted, particularly for the acute myeloid leukemia patients of the poor prognosis risk group that overexpress ALDH1A1 RNA.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Mice , Animals , Oxidants , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/metabolism , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Leukemia, Myeloid, Acute/genetics , Proteins , RNA , Aldehyde Dehydrogenase 1 Family
2.
Cancers (Basel) ; 15(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36900267

ABSTRACT

The enzyme ataxia-telangiectasia mutated (ATM) kinase is a pluripotent signaling mediator which activates cellular responses to genotoxic and metabolic stress. It has been shown that ATM enables the growth of mammalian adenocarcinoma stem cells, and therefore the potential benefits in cancer chemotherapy of a number of ATM inhibitors, such as KU-55933 (KU), are currently being investigated. We assayed the effects of utilizing a triphenylphosphonium-functionalized nanocarrier delivery system for KU on breast cancer cells grown either as a monolayer or in three-dimensional mammospheres. We observed that the encapsulated KU was effective against chemotherapy-resistant mammospheres of breast cancer cells, while having comparably lower cytotoxicity against adherent cells grown as monolayers. We also noted that the encapsulated KU sensitized the mammospheres to the anthracycline drug doxorubicin significantly, while having only a weak effect on adherent breast cancer cells. Our results suggest that triphenylphosphonium-functionalized drug delivery systems that contain encapsulated KU, or compounds with a similar impact, are a useful addition to chemotherapeutic treatment schemes that target proliferating cancers.

3.
J Innate Immun ; 14(6): 593-614, 2022.
Article in English | MEDLINE | ID: mdl-35512649

ABSTRACT

The primary cause of morbidity and mortality from infection with respiratory syncytial virus (RSV) is the excessive innate immune response(s) (IIR) in which reactive oxygen species (ROS) play key role(s). However, the mechanisms for these processes are not fully understood. We hypothesized that expressions of IIR genes are controlled by the ROS-generated epigenetic-like mark 7,8-dihydro-8-oxo(d)guanine (8-oxo(d)Gua) and 8-oxoguanine DNA glycosylase1 (OGG1). Here, we report that ROS not only generates intrahelical 8-oxo(d)Gua, but also enzymatically disables OGG1 in RSV-infected human airway epithelial cells and mouse lungs. OGG1 bound to 8-oxo(d)Gua in gene regulatory sequences promotes expression of IIR genes, and consequently exacerbates lung inflammation, histological changes, and body weight loss of experimental animals. Pharmacological inhibition of OGG1 substrate binding decreased expression of RSV-induced chemokine and cytokines and significantly lessened clinical symptoms. Results of mechanistic studies show that OGG1 binding at 8-oxo(d)Gua promoter regions modulated loading of transcription factors via transient cooperative interactions in RSV-infected lungs and airway epithelial cells. Other base specific DNA repair proteins had no effects. Collectively, this study identifies unprecedented roles of ROS-generated DNA base lesion(s) and cognate repair protein as a determinant of RSV-induced exuberant inflammation. Pharmaceutical inhibition of OGG1 interaction with its DNA substrate may represent a novel strategy in prevention/intervention of respiratory viral infections.


Subject(s)
DNA Glycosylases , Immunity, Innate , Humans , Animals , Mice , DNA , DNA Glycosylases/genetics
4.
Int J Pharm ; 585: 119465, 2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32497731

ABSTRACT

Cancer stem cells (CSCs) have garnered increasing attention over the past decade, as they are believed to play a crucial role in tumor progression and drug resistance. Accumulating evidence provides insight into the function of autophagy in maintenance and survival of CSCs. Here, we studied the impact of a mitochondriotropic triphenylphosphonium-functionalized dendrimeric nanocarrier on cultured breast cancer cell lines, grown either as adherent cells or as mammospheres that mimic a stem-like phenotype. The nanocarrier manifested a substantial cytotoxicity both alone as well as after encapsulation of chloroquine, a well-known autophagy inhibitor. The cytotoxic effects of the nanocarrier could be ascribed to interference with mitochondrial function. Importantly, mammospheres were selectively sensitive to encapsulated chloroquine and this depends on the expression of the gene encoding ATM kinase. Ataxia-telangiectasia mutated (ATM) kinase is an enzyme that functions as an essential signaling mediator that enables growth of cancer stem cells through the regulation of autophagy. We noted that this ATM-dependent sensitivity of mammospheres to encapsulated chloroquine was independent of the status of the tumor suppressor gene p53. Our study suggests that breast cancer stem cells, as they are modeled by mammospheres, are sensitive to encapsulated chloroquine, depending on the expression of the ATM kinase, which is thereby characterized as a potential biomarker for sensitivity to this type of treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Ataxia Telangiectasia Mutated Proteins/biosynthesis , Chloroquine/pharmacology , Nanoparticles/chemistry , Neoplastic Stem Cells/drug effects , Antineoplastic Agents/administration & dosage , Autophagy/drug effects , Cell Line, Tumor , Cell Survival , Chemistry, Pharmaceutical/methods , Chloroquine/administration & dosage , DNA-Binding Proteins/genetics , Drug Carriers/administration & dosage , Drug Carriers/pharmacology , Female , Humans , Organophosphorus Compounds
5.
Redox Biol ; 18: 43-53, 2018 09.
Article in English | MEDLINE | ID: mdl-29940424

ABSTRACT

8-Oxoguanine DNA glycosylase 1 (OGG1) initiates the base excision repair pathway by removing one of the most abundant DNA lesions, 8-oxo-7,8-dihydroguanine (8-oxoG). Recent data showed that 8-oxoG not only is a pro-mutagenic genomic base lesion, but also functions as an epigenetic mark and that consequently OGG1 acquire distinct roles in modulation of gene expression. In support, lack of functional OGG1 in Ogg1-/- mice led to an altered expression of genes including those responsible for the aberrant innate and adaptive immune responses and susceptibility to metabolic disorders. Therefore, the present study examined stimulus-driven OGG1-DNA interactions at whole genome level using chromatin immunoprecipitation (ChIP)-coupled sequencing, and the roles of OGG1 enriched on the genome were validated by molecular and system-level approaches. Results showed that signaling levels of cellular ROS generated by TNFα, induced enrichment of OGG1 at specific sites of chromatinized DNA, primarily in the regulatory regions of genes. OGG1-ChIP-ed genes are associated with important cellular and biological processes and OGG1 enrichment was limited to a time scale required for immediate cellular responses. Prevention of OGG1-DNA interactions by siRNA depletion led to modulation of NF-κB's DNA occupancy and differential expression of genes. Taken together these data show TNFα-ROS-driven enrichment of OGG1 at gene regulatory regions in the chromatinized DNA, which is a prerequisite to modulation of gene expression for prompt cellular responses to oxidant stress.


Subject(s)
DNA Damage , DNA Glycosylases/metabolism , Gene Regulatory Networks , Oxidative Stress , Reactive Oxygen Species/metabolism , Chromatin/genetics , Chromatin/metabolism , DNA/genetics , DNA/metabolism , HEK293 Cells , Humans , Tumor Necrosis Factor-alpha/metabolism
6.
Pharmaceuticals (Basel) ; 10(4)2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29160846

ABSTRACT

Drug delivery systems that target subcellular organelles and, in particular, mitochondria are considered to have great potential in treating disorders that are associated with mitochondrial dysfunction, including cancer or neurodegenerative diseases. To this end, a novel hyperbranched mitochondriotropic nanocarrier was developed for the efficient co-delivery of two different (both in chemical and pharmacological terms) bioactive compounds. The carrier is based on hyperbranched poly(ethyleneimine) functionalized with triphenylphosphonium groups that forms ~100 nm diameter nanoparticles in aqueous media and can encapsulate doxorubicin (DOX), a well-known anti-cancer drug, and chloroquine (CQ), a known chemosensitizer with arising potential in anticancer medication. The anticancer activity of this system against two aggressive DOX-resistant human prostate adenocarcinoma cell lines and in in vivo animal studies was assessed. The co-administration of encapsulated DOX and CQ leads to improved cell proliferation inhibition at extremely low DOX concentrations (0.25 µΜ). In vivo experiments against DU145 human prostate cancer cells grafted on immunodeficient mice resulted in tumor growth arrest during the three-week administration period and no pervasive side effects. The findings put forward the potential of such targeted low dose combination treatments as a therapeutic scheme with minimal adverse effects.

7.
Cancer Biol Med ; 14(3): 254-270, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28884042

ABSTRACT

The role of the transcription factor NF-κB in shaping the cancer microenvironment is becoming increasingly clear. Inflammation alters the activity of enzymes that modulate NF-κB function, and causes extensive changes in genomic chromatin that ultimately drastically alter cell-specific gene expression. NF-κB regulates the expression of cytokines and adhesion factors that control interactions among adjacent cells. As such, NF-κB fine tunes tissue cellular composition, as well as tissues' interactions with the immune system. Therefore, NF-κB changes the cell response to hormones and to contact with neighboring cells. Activating NF-κB confers transcriptional and phenotypic plasticity to a cell and thereby enables profound local changes in tissue function and composition. Research suggests that the regulation of NF-κB target genes is specifically altered in cancer. Such alterations occur not only due to mutations of NF-κB regulatory proteins, but also because of changes in the activity of specific proteostatic modules and metabolic pathways. This article describes the molecular mode of NF-κB regulation with a few characteristic examples of target genes.

8.
J Biol Chem ; 291(49): 25553-25566, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27756845

ABSTRACT

A large percentage of redox-responsive gene promoters contain evolutionarily conserved guanine-rich clusters; guanines are the bases most susceptible to oxidative modification(s). Consequently, 7,8-dihydro-8-oxoguanine (8-oxoG) is one of the most abundant base lesions in promoters and is primarily repaired via the 8-oxoguanine DNA glycosylase-1 (OOG1)-initiated base excision repair pathway. In view of a prompt cellular response to oxidative challenge, we hypothesized that the 8-oxoG lesion and the cognate repair protein OGG1 are utilized in transcriptional gene activation. Here, we document TNFα-induced enrichment of both 8-oxoG and OGG1 in promoters of pro-inflammatory genes, which precedes interaction of NF-κB with its DNA-binding motif. OGG1 bound to 8-oxoG upstream from the NF-κB motif increased its DNA occupancy by promoting an on-rate of both homodimeric and heterodimeric forms of NF-κB. OGG1 depletion decreased both NF-κB binding and gene expression, whereas Nei-like glycosylase-1 and -2 had a marginal effect. These results are the first to document a novel paradigm wherein the DNA repair protein OGG1 bound to its substrate is coupled to DNA occupancy of NF-κB and functions in epigenetic regulation of gene expression.


Subject(s)
DNA Glycosylases/biosynthesis , Epigenesis, Genetic , Gene Expression Regulation, Enzymologic , Guanine/analogs & derivatives , NF-kappa B/metabolism , Response Elements , Animals , DNA Glycosylases/genetics , DNA Repair , Guanine/metabolism , HEK293 Cells , Humans , Mice , Mice, Knockout , NF-kappa B/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
9.
Oncol Rev ; 10(1): 300, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27471584

ABSTRACT

In children, the most commonly encountered type of leukemia is acute lymphoblastic leukemia (ALL). An important source of morbidity and mortality in ALL are viral infections. Even though allogeneic transplantations, which are often applied also in ALL, carry a recognized risk for viral infections, there are multiple factors that make ALL patients susceptible to viral infections. The presence of those factors has an influence in the type and severity of infections. Currently available treatment options do not guarantee a positive outcome for every case of viral infection in ALL, without significant side effects. Side effects can have very serious consequences for the ALL patients, which include nephrotoxicity. For this reason a number of strategies for personalized intervention have been already clinically tested, and experimental approaches are being developed. Adoptive immunotherapy, which entails administration of ex vivo grown immune cells to a patient, is a promising approach in general, and for transplant recipients in particular. The ex vivo grown cells are aimed to strengthen the immune response to the virus that has been identified in the patients' blood and tissue samples. Even though many patients with weakened immune system can benefit from progress in novel approaches, a viral infection still poses a very significant risk for many patients. Therefore, preventive measures and supportive care are very important for ALL patients.

10.
Transl Res ; 173: 58-73.e2, 2016 07.
Article in English | MEDLINE | ID: mdl-27063960

ABSTRACT

Glucocorticoids (GCs) are frequently used in anticancer combination regimens; however, their continuous use adds selective pressure on cancer cells to develop GC-resistance via impairment of the glucocorticoid receptor (GR), therefore creating a need for GC-alternatives. Based on the drug repurposing approach and the commonalities between inflammation and neoplasia, drugs that are either in late-stage clinical trials and/or already marketed for GC-refractory inflammatory diseases could be evaluated as GC-substitutes in the context of cancer. Advantageously, unlike new molecular entities currently being de novo developed to restore GC-responsiveness of cancer cells, such drugs have documented safety and efficacy profile, which overall simplifies their introduction in clinical cancer trials. In this study, we estimated the potential of a well-established, multistage, cell line-based, mouse skin carcinogenesis model to be exploited as an initial screening tool for unveiling covert GC-substitutes. First, we categorized the cell lines of this model to GC-sensitive and GC-resistant, in correlation with their corresponding GR status, localization, and functionality. We found that GC-resistance starts in papilloma stages, due to a dysfunctional GR, which is overexpressed, DNA binding-competent, but transactivation-incompetent in papilloma, squamous, and spindle stages of the model. Then, aided by this tool, we evaluated the ability of N-bromotaurine, a naturally occurring, small-molecule, nonsteroid anti-inflammatory drug which is under consideration for use interchangeably/in replacement to GCs in skin inflammations, to restore antiproliferative response of GC-resistant cancer cells. Unlike GCs, N-bromotaurine inhibited cell-cycle progression in GC-resistant cancer cells and efficiently synergized with cisplatin, thus indicating a potential to be exploited instead of GCs against cancer.


Subject(s)
Cisplatin/pharmacology , Receptors, Glucocorticoid/metabolism , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Taurine/analogs & derivatives , Animals , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA/metabolism , Disease Models, Animal , Disease Progression , Drug Resistance, Neoplasm/drug effects , Glucocorticoids/pharmacology , Humans , Mice , Protein Binding/drug effects , Protein Transport/drug effects , Response Elements/genetics , Taurine/pharmacology , Transcriptional Activation/drug effects , Transcriptional Activation/genetics
11.
Oncotarget ; 6(27): 23058-134, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26405162

ABSTRACT

The BH3-only Bim protein is a major determinant for initiating the intrinsic apoptotic pathway under both physiological and pathophysiological conditions. Tight regulation of its expression and activity at the transcriptional, translational and post-translational levels together with the induction of alternatively spliced isoforms with different pro-apoptotic potential, ensure timely activation of Bim. Under physiological conditions, Bim is essential for shaping immune responses where its absence promotes autoimmunity, while too early Bim induction eliminates cytotoxic T cells prematurely, resulting in chronic inflammation and tumor progression. Enhanced Bim induction in neurons causes neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Moreover, type I diabetes is promoted by genetically predisposed elevation of Bim in ß-cells. On the contrary, cancer cells have developed mechanisms that suppress Bim expression necessary for tumor progression and metastasis. This review focuses on the intricate network regulating Bim activity and its involvement in physiological and pathophysiological processes.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Gene Expression Regulation , Membrane Proteins/metabolism , Proto-Oncogene Proteins/metabolism , 3' Untranslated Regions , Alternative Splicing , Animals , Apoptosis , Apoptosis Regulatory Proteins/genetics , Autoimmunity , Autophagy , Bcl-2-Like Protein 11 , Cell Differentiation , Cytoskeleton/metabolism , Epigenesis, Genetic , Granulocytes/cytology , Humans , Immune System , Intercellular Signaling Peptides and Proteins , Killer Cells, Natural/cytology , Membrane Proteins/genetics , Mice , Mice, Knockout , Mice, Transgenic , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasms/metabolism , Neurodegenerative Diseases/metabolism , Phosphorylation , Polymorphism, Genetic , Promoter Regions, Genetic , Protein Structure, Tertiary , Proto-Oncogene Proteins/genetics , Transcription Factors/metabolism , Up-Regulation
12.
Cytokine Growth Factor Rev ; 26(4): 389-403, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26119834

ABSTRACT

Recently it was discovered that a transient activation of transcription factor NF-κB can give cells properties essential for invasiveness and cancer initiating potential. In contrast, most oncogenes to date were characterized on the basis of mutations or by their constitutive overexpression. Study of NF-κB actually leads to a far more dynamic perspective on cancer: tumors caused by diverse oncogenes apparently evolve into cancer after loss of feedback regulation for NF-κB. This event alters the cellular phenotype and the expression of hormonal mediators, modifying signals between diverse cell types in a tissue. The result is a disruption of stem cell hierarchy in the tissue, and pervasive changes in the microenvironment and immune response to the malignant cells.


Subject(s)
NF-kappa B/metabolism , Tumor Microenvironment/physiology , Animals , Carcinogenesis/metabolism , Humans , NF-kappa B/genetics
13.
Mol Cell Endocrinol ; 351(2): 142-51, 2012 Apr 04.
Article in English | MEDLINE | ID: mdl-22273806

ABSTRACT

Twenty years ago a proteasome inhibitor was suggested as therapy for glucocorticoid-resistant multiple myeloma, a disease that involves terminally differentiated B cells. Since then, research has proven that it has utility on a number of tumors resistant to chemotherapy. Hematologic malignancy, however, often involves lesser differentiated cells, which have a high potential to modulate their intrinsic machinery and thereby activate alternative rescue pathways. A corresponding multiplicity of therapies is not always practical. One approach to conditions with heterogeneous physiology is to identify key biochemical mediators, thereby reducing the number of treatment targets. Results from several ongoing studies indicate convergence of genomically diverse signal pathways to a limited number of key downstream regulators of apoptosis. Convergence of pathways can be exploited to address the problem of genetic heterogeneity in acute leukemia: this would mean treating multiple molecular aberrations with fewer drugs and enhanced therapeutic benefit.


Subject(s)
Antineoplastic Agents/therapeutic use , Glucocorticoids/therapeutic use , Leukemia/drug therapy , Proteasome Inhibitors , Apoptosis/physiology , Humans , Leukemia/metabolism , Leukemia/pathology , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Receptors, Glucocorticoid/metabolism , Signal Transduction
14.
Bioessays ; 31(6): 629-41, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19382224

ABSTRACT

Sex steroids, through their receptors, have potent effects on the signal pathways involved in osteogenic or myogenic differentiation. However, a considerable segment of those signal pathways has a prominent role in epithelial neoplastic transformation. The capability to intervene locally has focused on specific ligands for the receptors. Nevertheless, many signals are mapped to interactions of steroid receptor motifs with heterologous regulatory proteins. Some of those proteins interact with the glucocorticoid receptor and other factors essential to cell fate. Interactions of steroid receptor domain motifs with heterologous proteins affect specific target pathways; consequently, manipulation of specified protein modules complexed with steroid receptors may be a next major step for enhancing molecular targeted therapeutics. In the future, intervention at specific sections of receptor primary sequence may prove therapeutically more efficient in targeting pathways of choice than ligand selectivity can be.


Subject(s)
Bone and Bones/physiology , Gonadal Steroid Hormones/metabolism , Neoplasms, Glandular and Epithelial/metabolism , Osteogenesis/physiology , Receptors, Steroid/metabolism , Animals , Bone and Bones/cytology , Humans , Models, Molecular , Muscle, Skeletal/physiology , Neoplasms, Glandular and Epithelial/pathology , Neoplasms, Glandular and Epithelial/therapy , Protein Conformation , Receptors, Steroid/chemistry , Receptors, Steroid/genetics , Signal Transduction/physiology
15.
Bioessays ; 30(4): 314-27, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18348191

ABSTRACT

Activating Transcription Factor-2 is a sequence-specific DNA-binding protein that belongs to the bZIP family of proteins and plays diverse roles in the mammalian cells. In response to stress stimuli, it activates a variety of gene targets including cyclin A, cyclin D and c-jun, which are involved in oncogenesis in various tissue types. ATF-2 expression has been correlated with maintenance of a cancer cell phenotype. However, other studies demonstrate an antiproliferative or apoptotic role for ATF-2. In this review, we summarize the signaling pathways that activate ATF-2, as well as its downstream targets. We examine the role of ATF-2 in carcinogenesis with respect to other bZIP proteins, using data from studies in human cancer cell lines, human tumours and mouse models, and we propose a potential model for its function in carcinogenesis, as well as a theoretical basis for its utility in anticancer drug design.


Subject(s)
Activating Transcription Factor 2/genetics , Activating Transcription Factor 2/physiology , Neoplasms/metabolism , Activating Transcription Factor 2/metabolism , Animals , Apoptosis , Cell Adhesion , Cell Line, Tumor , Cell Transformation, Neoplastic , DNA-Binding Proteins/metabolism , Dimerization , Humans , Mice , Models, Biological , Models, Genetic , Signal Transduction , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...