Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 186
Filter
1.
Eur Urol Oncol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38851995

ABSTRACT

BACKGROUND AND OBJECTIVE: While collagen density has been associated with poor outcomes in various cancers, its role in prostate cancer (PCa) remains elusive. Our aim was to analyze collagen-related transcriptomic, proteomic, and urinome alterations in the context of detection of clinically significant PCa (csPCa, International Society of Urological Pathology [ISUP] grade group ≥2). METHODS: Comprehensive analyses for PCa transcriptome (n = 1393), proteome (n = 104), and urinome (n = 923) data sets focused on 55 collagen-related genes. Investigation of the cellular source of collagen-related transcripts via single-cell RNA sequencing was conducted. Statistical evaluations, clustering, and machine learning models were used for data analysis to identify csPCa signatures. KEY FINDINGS AND LIMITATIONS: Differential expression of 30 of 55 collagen-related genes and 34 proteins was confirmed in csPCa in comparison to benign prostate tissue or ISUP 1 cancer. A collagen-high cancer cluster exhibited distinct cellular and molecular characteristics, including fibroblast and endothelial cell infiltration, intense extracellular matrix turnover, and enhanced growth factor and inflammatory signaling. Robust collagen-based machine learning models were established to identify csPCa. The models outcompeted prostate-specific antigen (PSA) and age, showing comparable performance to multiparametric magnetic resonance imaging (mpMRI) in predicting csPCa. Of note, the urinome-based collagen model identified four of five csPCa cases among patients with Prostate Imaging-Reporting and Data System (PI-IRADS) 3 lesions, for which the presence of csPCa is considered equivocal. The retrospective character of the study is a limitation. CONCLUSIONS AND CLINICAL IMPLICATIONS: Collagen-related transcriptome, proteome, and urinome signatures exhibited superior accuracy in detecting csPCa in comparison to PSA and age. The collagen signatures, especially in cases of ambiguous lesions on mpMRI, successfully identified csPCa and could potentially reduce unnecessary biopsies. The urinome-based collagen signature represents a promising liquid biopsy tool that requires prospective evaluation to improve the potential of this collagen-based approach to enhance diagnostic precision in PCa for risk stratification and guiding personalized interventions. PATIENT SUMMARY: In our study, collagen-related alterations in tissue, and urine were able to predict the presence of clinically significant prostate cancer at primary diagnosis.

2.
Proteomics ; : e2400052, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896836

ABSTRACT

The extracellular matrix (ECM) is composed of collagens, ECM glycoproteins, and proteoglycans (also named core matrisome proteins) that are critical for tissue structure and function, and matrisome-associated proteins that balance the production and degradation of the ECM proteins. The identification and quantification of core matrisome proteins using mass spectrometry is often hindered by their low abundance and their propensity to form macromolecular insoluble structures. In this study, we aimed to investigate the added value of decellularization in identifying and quantifying core matrisome proteins in mouse kidney. The decellularization strategy combined freeze-thaw cycles and sodium dodecyl sulphate treatment. We found that decellularization preserved 95% of the core matrisome proteins detected in non-decellularized kidney and revealed few additional ones. Decellularization also led to an average of 59 times enrichment of 96% of the core matrisome proteins as the result of the successful removal of cellular and matrisome-associated proteins. However, the enrichment varied greatly among core matrisome proteins, resulting in a misrepresentation of the native ECM composition in decellularized kidney. This should be brought to the attention of the matrisome research community, as it highlights the need for caution when interpreting proteomic data obtained from a decellularized organ.

3.
J Hypertens ; 42(8): 1331-1339, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38690919

ABSTRACT

OBJECTIVES: Hypertension is a common condition worldwide; however, its underlying mechanisms remain largely unknown. This study aimed to identify urinary peptides associated with hypertension to further explore the relevant molecular pathophysiology. METHODS: Peptidome data from 2876 individuals without end-organ damage were retrieved from the Human Urinary Proteome Database, belonging to general population (discovery) or type 2 diabetic (validation) cohorts. Participants were divided based on systolic blood pressure (SBP) and diastolic BP (DBP) into hypertensive (SBP ≥140 mmHg and/or DBP ≥90 mmHg) and normotensive (SBP <120 mmHg and DBP <80 mmHg, without antihypertensive treatment) groups. Differences in peptide abundance between the two groups were confirmed using an external cohort ( n  = 420) of participants without end-organ damage, matched for age, BMI, eGFR, sex, and the presence of diabetes. Furthermore, the association of the peptides with BP as a continuous variable was investigated. The findings were compared with peptide biomarkers of chronic diseases and bioinformatic analyses were conducted to highlight the underlying molecular mechanisms. RESULTS: Between hypertensive and normotensive individuals, 96 (mostly COL1A1 and COL3A1) peptides were found to be significantly different in both the discovery (adjusted) and validation (nominal significance) cohorts, with consistent regulation. Of these, 83 were consistently regulated in the matched cohort. A weak, yet significant, association between their abundance and standardized BP was also observed. CONCLUSION: Hypertension is associated with an altered urinary peptide profile with evident differential regulation of collagen-derived peptides. Peptides related to vascular calcification and sodium regulation were also affected. Whether these modifications reflect the pathophysiology of hypertension and/or early subclinical organ damage requires further investigation.


Subject(s)
Hypertension , Humans , Hypertension/urine , Hypertension/physiopathology , Female , Male , Middle Aged , Peptides/urine , Blood Pressure , Biomarkers/urine , Aged , Cohort Studies , Diabetes Mellitus, Type 2/urine , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/complications , Adult
4.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338666

ABSTRACT

Diabetic kidney disease (DKD) is characterized by histological changes including fibrosis and inflammation. Evidence supports that DKD is mediated by the innate immune system and more specifically by the complement system. Using Ins2Akita T1D diabetic mice, we studied the connection between the complement cascade, inflammation, and fibrosis in early DKD. Data were extracted from a previously published quantitative-mass-spectrometry-based proteomics analysis of kidney glomeruli of 2 (early DKD) and 4 months (moderately advanced DKD)-old Ins2Akita mice and their controls A Spearman rho correlation analysis of complement- versus inflammation- and fibrosis-related protein expression was performed. A cross-omics validation of the correlation analyses' results was performed using public-domain transcriptomics datasets (Nephroseq). Tissue sections from 43 patients with DKD were analyzed using immunofluorescence. Among the differentially expressed proteins, the complement cascade proteins C3, C4B, and IGHM were significantly increased in both early and later stages of DKD. Inflammation-related proteins were mainly upregulated in early DKD, and fibrotic proteins were induced in moderately advanced stages of DKD. The abundance of complement proteins with fibrosis- and inflammation-related proteins was mostly positively correlated in early stages of DKD. This was confirmed in seven additional human and mouse transcriptomics DKD datasets. Moreover, C3 and IGHM mRNA levels were found to be negatively correlated with the estimated glomerular filtration rate (range for C3 rs = -0.58 to -0.842 and range for IGHM rs = -0.6 to -0.74) in these datasets. Immunohistology of human kidney biopsies revealed that C3, C1q, and IGM proteins were induced in patients with DKD and were correlated with fibrosis and inflammation. Our study shows for the first time the potential activation of the complement cascade associated with inflammation-mediated kidney fibrosis in the Ins2Akita T1D mouse model. Our findings could provide new perspectives for the treatment of early DKD as well as support the use of Ins2Akita T1D in pre-clinical studies.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Diabetic Nephropathies , Humans , Mice , Animals , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Experimental/metabolism , Inflammation/metabolism , Disease Models, Animal , Complement System Proteins/genetics , Complement System Proteins/metabolism , Fibrosis , Kidney/metabolism
5.
Transl Neurodegener ; 13(1): 11, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38378800

ABSTRACT

BACKGROUND: It is now realized that Parkinson's disease (PD) pathology extends beyond the substantia nigra, affecting both central and peripheral nervous systems, and exhibits a variety of non-motor symptoms often preceding motor features. Neuroinflammation induced by activated microglia and astrocytes is thought to underlie these manifestations. α-Synuclein aggregation has been linked with sustained neuroinflammation in PD, aggravating neuronal degeneration; however, there is still a lack of critical information about the structural identity of the α-synuclein conformers that activate microglia and/or astrocytes and the molecular pathways involved. METHODS: To investigate the role of α-synuclein conformers in the development and maintenance of neuroinflammation, we used primary quiescent microglia and astrocytes, post-mortem brain tissues from PD patients and A53T α-synuclein transgenic mice that recapitulate key features of PD-related inflammatory responses in the absence of cell death, i.e., increased levels of pro-inflammatory cytokines and complement proteins. Biochemical and -omics techniques including RNAseq and secretomic analyses, combined with 3D reconstruction of individual astrocytes and live calcium imaging, were used to uncover the molecular mechanisms underlying glial responses in the presence of α-synuclein oligomers in vivo and in vitro. RESULTS: We found that the presence of SDS-resistant hyper-phosphorylated α-synuclein oligomers, but not monomers, was correlated with sustained inflammatory responses, such as elevated levels of endogenous antibodies and cytokines and microglial activation. Similar oligomeric α-synuclein species were found in post-mortem human brain samples of PD patients but not control individuals. Detailed analysis revealed a decrease in Iba1Low/CD68Low microglia and robust alterations in astrocyte number and morphology including process retraction. Our data indicated an activation of the p38/ATF2 signaling pathway mostly in microglia and a sustained induction of the NF-κB pathway in astrocytes of A53T mice. The sustained NF-κB activity triggered the upregulation of astrocytic T-type Cav3.2 Ca2+ channels, altering the astrocytic secretome and promoting the secretion of IGFBPL1, an IGF-1 binding protein with anti-inflammatory and neuroprotective potential. CONCLUSIONS: Our work supports a causative link between the neuron-produced α-synuclein oligomers and sustained neuroinflammation in vivo and maps the signaling pathways that are stimulated in microglia and astrocytes. It also highlights the recruitment of astrocytic Cav3.2 channels as a potential neuroprotective mediator against the α-synuclein-induced neuroinflammation.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , Mice , Animals , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , NF-kappa B/metabolism , Astrocytes/metabolism , Neuroinflammatory Diseases , Calcium Signaling , Parkinson Disease/metabolism , Mice, Transgenic , Cytokines
6.
Nephrol Dial Transplant ; 39(3): 453-462, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-37697716

ABSTRACT

BACKGROUND AND HYPOTHESIS: Specific urinary peptides hold information on disease pathophysiology, which, in combination with artificial intelligence, could enable non-invasive assessment of chronic kidney disease (CKD) aetiology. Existing approaches are generally specific for the diagnosis of single aetiologies. We present the development of models able to simultaneously distinguish and spatially visualize multiple CKD aetiologies. METHODS: The urinary peptide data of 1850 healthy control (HC) and CKD [diabetic kidney disease (DKD), immunoglobulin A nephropathy (IgAN) and vasculitis] participants were extracted from the Human Urinary Proteome Database. Uniform manifold approximation and projection (UMAP) coupled to a support vector machine algorithm was used to generate multi-peptide models to perform binary (DKD, HC) and multiclass (DKD, HC, IgAN, vasculitis) classifications. This pipeline was compared with the current state-of-the-art single-aetiology CKD urinary peptide models. RESULTS: In an independent test set, the developed models achieved 90.35% and 70.13% overall predictive accuracies, respectively, for the binary and the multiclass classifications. Omitting the UMAP step led to improved predictive accuracies (96.14% and 85.06%, respectively). As expected, the HC class was distinguished with the highest accuracy. The different classes displayed a tendency to form distinct clusters in the 3D space based on their disease state. CONCLUSION: Urinary peptide data present an effective basis for CKD aetiology differentiation using machine learning models. Although adding the UMAP step to the models did not improve prediction accuracy, it may provide a unique visualization advantage. Additional studies are warranted to further validate the pipeline's clinical potential as well as to expand it to other CKD aetiologies and also other diseases.


Subject(s)
Glomerulonephritis, IGA , Renal Insufficiency, Chronic , Vasculitis , Humans , Biomarkers , Diagnosis, Differential , Artificial Intelligence , Glomerulonephritis, IGA/complications , Liquid Biopsy/adverse effects , Peptides , Proteomics
7.
iScience ; 26(11): 108100, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37915594

ABSTRACT

Liver transplantation is the gold-standard therapy for acute hepatic failure (AHF) with limitations related to organ shortage and life-long immunosuppressive therapy. Cell therapy emerges as a promising alternative to transplantation. We have previously shown that IL-10 and Annexin-A1 released by amniotic fluid human mesenchymal stromal cells (AF-MSCs) and their hepatocyte progenitor-like (HPL) or hepatocyte-like (HPL) cells induce liver repair and downregulate systemic inflammation in a CCl4-AHF mouse model. Herein, we demonstrate that exosomes (EXO) derived from these cells improve liver phenotype in CCl4-induced mice and promote oval cell proliferation. LC-MS/MS proteomic analysis identified MEFG-8 in EXO cargo that facilitates rescue of AHF by suppressing PI3K signaling. Administration of recombinant MFGE-8 protein also reduced liver damage in CCl4-induced mice. Clinically, MEFG-8 expression was decreased in liver biopsies from AHF patients. Collectively, our study provides proof-of-concept for an innovative, cell-free, less immunogenic, and non-toxic alternative strategy for AHF.

8.
Int J Mol Sci ; 24(20)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37895091

ABSTRACT

Locally advanced rectal cancer (LARC) presents a challenge in identifying molecular markers linked to the response to neoadjuvant chemoradiotherapy (nCRT). This study aimed to utilize a sensitive proteomic method, data-independent mass spectrometry (DIA-MS), to extensively analyze the LARC proteome, seeking individuals with favorable initial responses suitable for a watch-and-wait approach. This research addresses the unmet need to understand the response to treatment, potentially guiding personalized strategies for LARC patients. Post-treatment assessment included MRI scans and proctoscopy. This research involved 97 LARC patients treated with intense chemoradiotherapy, comprising radiation and chemotherapy. Out of 97 LARC included in this study, we selected 20 samples with the most different responses to nCRT for proteome profiling (responders vs. non-responders). This proteomic approach shows extensive proteome coverage in LARC samples. The analysis identified a significant number of proteins compared to a prior study. A total of 915 proteins exhibited differential expression between the two groups, with certain signaling pathways associated with response mechanisms, while top candidates had good predictive potential. Proteins encoded by genes SMPDL3A, PCTP, LGMN, SYNJ2, NHLRC3, GLB1, and RAB43 showed high predictive potential of unfavorable treatment outcome, while RPA2, SARNP, PCBP2, SF3B2, HNRNPF, RBBP4, MAGOHB, DUT, ERG28, and BUB3 were good predictive biomarkers of favorable treatment outcome. The identified proteins and related biological processes provide promising insights that could enhance the management and care of LARC patients.


Subject(s)
Neoadjuvant Therapy , Rectal Neoplasms , Humans , Neoadjuvant Therapy/methods , Proteome/metabolism , Proteomics , Rectal Neoplasms/genetics , Treatment Outcome , Chemoradiotherapy/methods , Biomarkers , RNA-Binding Proteins , Nuclear Proteins/metabolism
9.
Int J Mol Sci ; 24(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37686344

ABSTRACT

Type II diabetes mellitus (T2DM) accounts for approximately 90% of all diabetes mellitus cases in the world. Glucagon-like peptide-1 receptor (GLP-1R) agonists have established an increased capability to target directly or indirectly six core defects associated with T2DM, while the underlying molecular mechanisms of these pharmacological effects are not fully known. This exploratory study was conducted to analyze the effect of treatment with GLP-1R agonists on the urinary peptidome of T2DM patients. Urine samples of thirty-two T2DM patients from the PROVALID study ("A Prospective Cohort Study in Patients with T2DM for Validation of Biomarkers") collected pre- and post-treatment with GLP-1R agonist drugs were analyzed by CE-MS. In total, 70 urinary peptides were significantly affected by GLP-1R agonist treatment, generated from 26 different proteins. The downregulation of MMP proteases, based on the concordant downregulation of urinary collagen peptides, was highlighted. Treatment also resulted in the downregulation of peptides from SERPINA1, APOC3, CD99, CPSF6, CRNN, SERPINA6, HBA2, MB, VGF, PIGR, and TTR, many of which were previously found to be associated with increased insulin resistance and inflammation. The findings indicate potential molecular mechanisms of GLP-1R agonists in the context of the management of T2DM and the prevention or delaying of the progression of its associated diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Diabetes Mellitus, Type 2/drug therapy , Prospective Studies , Apolipoprotein C-III , Metabolic Networks and Pathways
10.
J Transl Med ; 21(1): 663, 2023 09 24.
Article in English | MEDLINE | ID: mdl-37741989

ABSTRACT

BACKGROUND: There is evidence of pre-established vulnerability in individuals that increases the risk of their progression to severe disease or death, although the mechanisms causing this are still not fully understood. Previous research has demonstrated that a urinary peptide classifier (COV50) predicts disease progression and death from SARS-CoV-2 at an early stage, indicating that the outcome prediction may be partly due to vulnerabilities that are already present. The aim of this study is to examine the ability of COV50 to predict future non-COVID-19-related mortality, and evaluate whether the pre-established vulnerability can be generic and explained on a molecular level by urinary peptides. METHODS: Urinary proteomic data from 9193 patients (1719 patients sampled at intensive care unit (ICU) admission and 7474 patients with other diseases (non-ICU)) were extracted from the Human Urinary Proteome Database. The previously developed COV50 classifier, a urinary proteomics biomarker panel consisting of 50 peptides, was applied to all datasets. The association of COV50 scoring with mortality was evaluated. RESULTS: In the ICU group, an increase in the COV50 score of one unit resulted in a 20% higher relative risk of death [adjusted HR 1.2 (95% CI 1.17-1.24)]. The same increase in COV50 in non-ICU patients resulted in a higher relative risk of 61% [adjusted HR 1.61 (95% CI 1.47-1.76)], consistent with adjusted meta-analytic HR estimate of 1.55 [95% CI 1.39-1.73]. The most notable and significant changes associated with future fatal events were reductions of specific collagen fragments, most of collagen alpha I (I). CONCLUSION: The COV50 classifier is predictive of death in the absence of SARS-CoV-2 infection, suggesting that it detects pre-existing vulnerability. This prediction is mainly based on collagen fragments, possibly reflecting disturbances in the integrity of the extracellular matrix. These data may serve as a basis for proteomics-guided intervention aiming towards manipulating/ improving collagen turnover, thereby reducing the risk of death.


Subject(s)
COVID-19 , Humans , Proteomics , SARS-CoV-2 , Collagen Type I , Peptides
11.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37765106

ABSTRACT

(1) Background: Kidney and cardiovascular diseases are responsible for a large fraction of population morbidity and mortality. Early, targeted, personalized intervention represents the ideal approach to cope with this challenge. Proteomic/peptidomic changes are largely responsible for the onset and progression of these diseases and should hold information about the optimal means of treatment and prevention. (2) Methods: We investigated the prediction of renal or cardiovascular events using previously defined urinary peptidomic classifiers CKD273, HF2, and CAD160 in a cohort of 5585 subjects, in a retrospective study. (3) Results: We have demonstrated a highly significant prediction of events, with an HR of 2.59, 1.71, and 4.12 for HF, CAD, and CKD, respectively. We applied in silico treatment, implementing on each patient's urinary profile changes to the classifiers corresponding to exactly defined peptide abundance changes, following commonly used interventions (MRA, SGLT2i, DPP4i, ARB, GLP1RA, olive oil, and exercise), as defined in previous studies. Applying the proteomic classifiers after the in silico treatment indicated the individual benefits of specific interventions on a personalized level. (4) Conclusions: The in silico evaluation may provide information on the future impact of specific drugs and interventions on endpoints, opening the door to a precision-based medicine approach. An investigation into the extent of the benefit of this approach in a prospective clinical trial is warranted.

12.
Mass Spectrom Rev ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37534389

ABSTRACT

We are approaching the third decade since the establishment of the very first proteomics repositories back in the mid-'00s. New experimental approaches and technologies continuously enrich the field while producing vast amounts of mass spectrometry data. Together with initiatives to establish standard terminology and file formats, proteomics is rapidly transforming into a mature component of systems biology. Here we describe the ProteomeXchange consortium repositories. We specifically search, collect and evaluate public human tissue datasets (categorized as "complete" by the repository) submitted in 2015-2022, to both map the existing information and assess the data set reusability. Human tissue data are variably represented in the repositories reviewed, ranging between 10% and 25% of the total data submitted, with cancers being the most represented, followed by neuronal and cardiovascular diseases. About half of the retrieved data sets were found to lack annotations or metadata necessary to directly replicate the analysis. This poses a rough challenge to data reusability and highlights the need to increase awareness of the mage-tab file format for metadata in the community. Overall, proteomics repositories have evolved greatly over the past 7 years, as they have grown in size and become equipped with various powerful applications and tools that enable data searching and analytical tasks. However, to make the most of this potential, priority must be given to finding ways to secure detailed metadata for each submission, which is likely the next major milestone for proteomics repositories.

13.
Methods Mol Biol ; 2684: 59-99, 2023.
Article in English | MEDLINE | ID: mdl-37410228

ABSTRACT

Delivering better care for patients with bladder cancer (BC) necessitates the development of novel therapeutic strategies that address both the high disease heterogeneity and the limitations of the current therapeutic modalities, such as drug low efficacy and patient resistance acquisition. Drug repurposing is a cost-effective strategy that targets the reuse of existing drugs for new therapeutic purposes. Such a strategy could open new avenues toward more effective BC treatment. BC patients' multi-omics signatures can be used to guide the investigation of existing drugs that show an effective therapeutic potential through drug repurposing. In this book chapter, we present an integrated multilayer approach that includes cross-omics analyses from publicly available transcriptomics and proteomics data derived from BC tissues and cell lines that were investigated for the development of disease-specific signatures. These signatures are subsequently used as input for a signature-based repurposing approach using the Connectivity Map (CMap) tool. We further explain the steps that may be followed to identify and select existing drugs of increased potential for repurposing in BC patients.


Subject(s)
Drug Repositioning , Urinary Bladder Neoplasms , Humans , Gene Expression Profiling , Proteomics , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics
14.
Int J Mol Sci ; 24(12)2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37373151

ABSTRACT

The collagen family contains 28 proteins, predominantly expressed in the extracellular matrix (ECM) and characterized by a triple-helix structure. Collagens undergo several maturation steps, including post-translational modifications (PTMs) and cross-linking. These proteins are associated with multiple diseases, the most pronounced of which are fibrosis and bone diseases. This review focuses on the most abundant ECM protein highly implicated in disease, type I collagen (collagen I), in particular on its predominant chain collagen type I alpha 1 (COLα1 (I)). An overview of the regulators of COLα1 (I) and COLα1 (I) interactors is presented. Manuscripts were retrieved searching PubMed, using specific keywords related to COLα1 (I). COL1A1 regulators at the epigenetic, transcriptional, post-transcriptional and post-translational levels include DNA Methyl Transferases (DNMTs), Tumour Growth Factor ß (TGFß), Terminal Nucleotidyltransferase 5A (TENT5A) and Bone Morphogenic Protein 1 (BMP1), respectively. COLα1 (I) interacts with a variety of cell receptors including integrinß, Endo180 and Discoidin Domain Receptors (DDRs). Collectively, even though multiple factors have been identified in association to COLα1 (I) function, the implicated pathways frequently remain unclear, underscoring the need for a more spherical analysis considering all molecular levels simultaneously.


Subject(s)
Collagen Type I , Collagen , Collagen/metabolism , Collagen Type I/metabolism , Extracellular Matrix/metabolism , Discoidin Domain Receptors/metabolism , Receptors, Cell Surface/metabolism
15.
Int J Mol Sci ; 24(6)2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36982475

ABSTRACT

Chronic kidney disease (CKD) is prevalent in 10% of world's adult population. The role of protein glycosylation in causal mechanisms of CKD progression is largely unknown. The aim of this study was to identify urinary O-linked glycopeptides in association to CKD for better characterization of CKD molecular manifestations. Urine samples from eight CKD and two healthy subjects were analyzed by CE-MS/MS and glycopeptides were identified by a specific software followed by manual inspection of the spectra. Distribution of the identified glycopeptides and their correlation with Age, eGFR and Albuminuria were evaluated in 3810 existing datasets. In total, 17 O-linked glycopeptides from 7 different proteins were identified, derived primarily from Insulin-like growth factor-II (IGF2). Glycosylation occurred at the surface exposed IGF2 Threonine 96 position. Three glycopeptides (DVStPPTVLPDNFPRYPVGKF, DVStPPTVLPDNFPRYPVG and DVStPPTVLPDNFPRYP) exhibited positive correlation with Age. The IGF2 glycopeptide (tPPTVLPDNFPRYP) showed a strong negative association with eGFR. These results suggest that with aging and deteriorating kidney function, alterations in IGF2 proteoforms take place, which may reflect changes in mature IGF2 protein. Further experiments corroborated this hypothesis as IGF2 increased plasma levels were observed in CKD patients. Protease predictions, considering also available transcriptomics data, suggest activation of cathepsin S with CKD, meriting further investigation.


Subject(s)
Glycopeptides , Renal Insufficiency, Chronic , Tandem Mass Spectrometry , Adult , Humans , Aging , Glycopeptides/chemistry , Glycosylation , Insulin-Like Growth Factor II , Software , Tandem Mass Spectrometry/methods , Renal Insufficiency, Chronic/metabolism
16.
Commun Biol ; 6(1): 265, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36914713

ABSTRACT

Atherosclerotic plaque rupture leading to myocardial infarction is a major global health burden. Applying the tandem stenosis (TS) mouse model, which distinctively exhibits the characteristics of human plaque instability/rupture, we use quantitative proteomics to understand and directly compare unstable and stable atherosclerosis. Our data highlight the disparate natures and define unique protein signatures of unstable and stable atherosclerosis. Key proteins and pathway networks are identified such as the innate immune system, and neutrophil degranulation. The latter includes calprotectin S100A8/A9, which we validate in mouse and human unstable plaques, and we demonstrate the plaque-stabilizing effects of its inhibition. Overall, we provide critical insights into the unique proteomic landscape of unstable atherosclerosis (as distinct from stable atherosclerosis and vascular tissue). We further establish the TS model as a reliable preclinical tool for the discovery and testing of plaque-stabilizing drugs. Finally, we provide a knowledge resource defining unstable atherosclerosis that will facilitate the identification and validation of long-sought-after therapeutic targets and drugs for plaque stabilization.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Humans , Animals , Mice , Plaque, Atherosclerotic/drug therapy , Proteomics , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/metabolism , Disease Models, Animal
17.
Cancers (Basel) ; 15(4)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36831508

ABSTRACT

(1) Background: Prostate cancer (PCa) is the most frequently diagnosed cancer in men. Wide application of prostate specific antigen test has historically led to over-treatment, starting from excessive biopsies. Risk calculators based on molecular and clinical variables can be of value to determine the risk of PCa and as such, reduce unnecessary and invasive biopsies. Urinary molecular studies have been mostly focusing on sampling after initial intervention (digital rectal examination and/or prostate massage). (2) Methods: Building on previous proteomics studies, in this manuscript, we aimed at developing a biomarker model for PCa detection based on urine sampling without prior intervention. Capillary electrophoresis coupled to mass spectrometry was applied to acquire proteomics profiles from 970 patients from two different clinical centers. (3) Results: A case-control comparison was performed in a training set of 413 patients and 181 significant peptides were subsequently combined by a support vector machine algorithm. Independent validation was initially performed in 272 negative for PCa and 138 biopsy-confirmed PCa, resulting in an AUC of 0.81, outperforming current standards, while a second validation phase included 147 PCa patients. (4) Conclusions: This multi-dimensional biomarker model holds promise to improve the current diagnosis of PCa, by guiding invasive biopsies.

18.
Urol Oncol ; 41(7): 302-306, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36437158

ABSTRACT

In 1997 an international group of scientists organized a meeting in Barcelona, Spain, to discuss the use of biomarkers in the management of patients with bladder cancer. This meeting was the offspring of an - initially informal - group that finally resulted in the foundation and incorporation of the International Bladder Cancer Network (IBCN) e.V. in 2005. Over the years the group has supported several research initiatives and generated several recommendations on the use of biomarkers in the diagnosis and treatment of bladder cancer. Meeting quality was generated by inviting experts presenting state-of-the-art lectures or work in progress reports, interdisciplinarity and the limited number of participants supporting an open and personal exchange resulted in a format increasingly attracting participants from all over the world. The recent limitations caused by the Covid-19 pandemic were partially met by organizing several well attended webinars. The future challenge is to maintain the IBCN meeting spirit despite an increasing interest of the scientific community and industrial partners to participate. However, the integration of and interaction between increasingly more specialized disciplines is a challenge that can be better catalyzed by an international multidisciplinary network than mostly national professional associations.


Subject(s)
COVID-19 , Urinary Bladder Neoplasms , Humans , Pandemics , Biomarkers , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/therapy , Spain
19.
Br J Cancer ; 127(11): 2043-2051, 2022 11.
Article in English | MEDLINE | ID: mdl-36192490

ABSTRACT

BACKGROUND: Non-invasive urine-based biomarkers can potentially improve current diagnostic and monitoring protocols for bladder cancer (BC). Here we assess the performance of earlier published biomarker panels for BC detection (BC-116) and monitoring of recurrence (BC-106) in combination with cytology, in two prospectively collected patient cohorts. METHODS: Of the 602 patients screened for BC, 551 were found eligible. For the primary setting, 73 patients diagnosed with primary BC (n = 27) and benign urological disorders, including patients with macroscopic haematuria, cystitis and/or nephrolithiasis (n = 46) were included. In total, 478 patients under surveillance were additionally considered (83 BC recurrences; 395 negative for recurrence). Urine samples were analysed with capillary electrophoresis-mass spectrometry. The biomarker score was estimated via support vector machine-based software. RESULTS: Validation of BC-116 biomarker panel resulted in 89% sensitivity and 67% specificity (AUCBC-116 = 0.82). A diagnostic score based on cytology and BC-116 resulted in good (AUCNom116 = 0.85) but not significantly better performance (P = 0.5672). A diagnostic score including BC-106 and cytology was evaluated (AUCNom106 = 0.82), significantly outperforming both cytology (AUCcyt = 0.72; P = 0.0022) and BC-106 (AUCBC-106 = 0.67; P = 0.0012). CONCLUSIONS: BC-116 biomarker panel is a useful test for detecting primary BC. BC-106 classifier integrated with cytology showing >95% negative predictive value, might be useful for decreasing the number of cystoscopies during surveillance.


Subject(s)
Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/urine , Biomarkers, Tumor/urine , Prospective Studies , Diagnostic Tests, Routine , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/urine , Peptides , Sensitivity and Specificity
20.
Hemasphere ; 6(11): e791, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36285072

ABSTRACT

Carfilzomib is an irreversible proteasome inhibitor indicated for relapsed/refractory multiple myeloma. Carfilzomib toxicity includes renal adverse effects (RAEs) of obscure pathobiology. Therefore, we investigated the mechanisms of nephrotoxicity developed by Carfilzomib. In a first experimental series, we used our previously established in vivo mouse models of Carfilzomib cardiotoxicity, that incorporated 2 and 4 doses of Carfilzomib, to identify whether Carfilzomib affects renal pathways. Hematology and biochemical analyses were performed, while kidneys underwent histological and molecular analyses. In a second and third experimental series, the 4 doses protocol was repeated for 24 hours urine collection and proteomic/metabolomic analyses. To test an experimental intervention, primary murine collecting duct tubular epithelial cells were treated with Carfilzomib and/or Eplerenone and Metformin. Finally, Eplerenone was orally co-administered with Carfilzomib daily (165 mg/kg) in the 4 doses protocol. We additionally used material from 7 patients to validate our findings and patients underwent biochemical analysis and assessment of renal mineralocorticoid receptor (MR) axis activation. In vivo screening showed that Carfilzomib-induced renal histological deficits and increased serum creatinine, urea, NGAL levels, and proteinuria only in the 4 doses protocol. Carfilzomib decreased diuresis, altered renal metabolism, and activated MR axis. This was consistent with the cytotoxicity found in primary murine collecting duct tubular epithelial cells, whereas Carfilzomib + Eplerenone co-administration abrogated Carfilzomib-related nephrotoxic effects in vitro and in vivo. Renal SGK-1, a marker of MR activation, increased in patients with Carfilzomib-related RAEs. Conclusively, Carfilzomib-induced renal MR/SGK-1 activation orchestrates RAEs and water retention both in vivo and in the clinical setting. MR blockade emerges as a potential therapeutic approach against Carfilzomib-related nephrotoxicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...