Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 63(5): 055013, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29424711

ABSTRACT

Histotripsy is an ultrasonic tissue ablation method based on acoustic cavitation. It has been shown that cavitation dynamics change depending on the mechanical properties of the host medium. During histotripsy treatment, the target-tissue is gradually fractionated and eventually liquefied to acellular homogenate. In this study, the change in the collapse time (t col) of the cavitation bubble cloud over the course of histotripsy treatment is investigated as an indicator for progression of the tissue fractionation process throughout treatment. A 500 kHz histotripsy transducer is used to generate single-location lesions within tissue-mimicking agar phantoms of varying stiffness levels as well as ex vivo bovine liver samples. Cavitation collapse signals are acquired with broadband hydrophones, and cavitation is imaged optically using a high-speed camera in transparent tissue-mimicking phantoms. The high-speed-camera-acquired measurements of t col validate the acoustic hydrophone measurements. Increases in t col are observed both with decreasing phantom stiffness and throughout histotripsy treatment with increasing number of pulses applied. The increasing trend of t col throughout the histotripsy treatment correlates well with the progression of lesion formation generated in tissue-mimicking phantoms (R 2 = 0.87). Finally, the increasing trend of t col over the histotripsy treatment is validated in ex vivo bovine liver.


Subject(s)
Ablation Techniques/methods , High-Intensity Focused Ultrasound Ablation/methods , Lithotripsy/methods , Liver/surgery , Phantoms, Imaging , Algorithms , Animals , Cattle , Dose Fractionation, Radiation , Radiation Dosage
2.
Phys Med Biol ; 59(11): 2553-68, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24785433

ABSTRACT

This study investigates the in vivo therapeutic capabilities of transcostal histotripsy without using aberration correction mechanisms and its thermal impact on overlying tissues. Non-invasive liver treatments were conducted in eight pigs, with four lesions generated through transcostal windows with full ribcage obstruction and four lesions created through transabdominal windows without rib coverage. Treatments were performed by a 750 kHz focused transducer using 5 cycle pulses at 200 Hz PRF, with estimated in situ peak negative pressures of 13-17 MPa. Temperatures on overlying tissues including the ribs were measured with needle thermocouples inserted superficially beneath the skin. Treatments of approximately 40 min were applied, allowing overlying tissue temperatures to reach saturation. Lesions yielded statistically comparable ablation volumes of 3.6 ± 1.7 cm(3) and 4.5 ± 2.0 cm(3) in transcostal and transabdominal treatments, respectively. The average temperature increase observed in transcostal treatments was 3.9 ± 2.1 °C, while transabdominal treatments showed an increase of 1.7 ± 1.3 °C. No damage was seen on the ribcage or other overlying tissues. These results indicate that histotripsy can achieve effective treatment through the ribcage in vivo without requiring correction mechanisms, while inducing no substantial thermal effects or damage to overlying tissues. Such capabilities could benefit several non-invasive therapy applications involving transcostal treatment windows.


Subject(s)
Ultrasonic Therapy/methods , Acoustics , Animals , Mechanical Phenomena , Movement , Respiration , Ribs , Swine , Temperature , Ultrasonic Therapy/adverse effects
3.
J Mater Sci Mater Med ; 24(4): 1093-104, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23354739

ABSTRACT

Magnetoelastic (ME) biomaterials are ferromagnetic materials that physically deform when exposed to a magnetic field. This work describes the real-time control and monitoring capabilities of ME biomaterials in wound healing. Studies were conducted to demonstrate the capacity of the materials to monitor changes in protein adsorption and matrix stiffness. In vitro experiments demonstrated that ME biomaterials can monitor cell adhesion and growth in real-time, and a long-term in vivo study demonstrated their ability to monitor the host response (wound healing) to an implant and control local cell density and collagen matrix production at the soft tissue-implant interface. This approach represents a potentially self-aware and post-deployment activated biomaterial coating as a means to monitor an implant surface and provide an adjuvant therapy for implant fibrosis.


Subject(s)
Biocompatible Materials , Elasticity , Magnetics , Wound Healing , Animals , Cell Adhesion , Cell Line , Cell Proliferation , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...