Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1225587, 2023.
Article in English | MEDLINE | ID: mdl-37808306

ABSTRACT

The extreme genetic and immunobiological heterogeneity exhibited by the African swine fever virus (ASFV) has been a significant impediment in the development of an efficacious vaccine against this disease. Consequently, the lack of internationally accepted protocols for the laboratory evaluation of candidate vaccines has become a major concern within the scientific community. The formulation of such protocols necessitates the establishment of a consensus at the international level on methods for the determination of homologous and heterologous isolates/strains of ASFV. The present article provides a comprehensive description of biological techniques employed in the classification of ASFV by seroimmunotypes. These techniques involve a holistic evaluation of ASFV isolates/strains based on their antigenic properties as determined by the hemadsorption inhibiting test (HAdI) using type-specific sera and an immunological test (IT) conducted on pigs inoculated with attenuated strains. The article outlines the methods for setting up the HAdI test, an IT on pigs, and the processes involved in the acquisition of type-specific serums for the HAdI test. It is pertinent to note that the definitive classification of seroimmunotype can only be ascertained after conducting an IT on pigs. The findings from the HAdI test or the phylogenetic analysis of the EP402R gene should be considered preliminary in nature.

2.
Vaccines (Basel) ; 11(5)2023 May 21.
Article in English | MEDLINE | ID: mdl-37243111

ABSTRACT

Understanding the immunological mechanisms of protection and the viral proteins involved in the induction of a protective immune response to the African swine fever virus (ASFV) is still limited. In the last years, the CD2v protein (gp110-140) of the ASFV has been proven to be a serotype-specific protein. Current work is devoted to the investigation of the possibility of creating protection against virulent ASFV strain Mozambique-78 (seroimmunotype III) in pigs previously vaccinated with vaccine strain FK-32/135 (seroimmunotype IV) and then immunized with the pUBB76A_CD2v plasmid, containing a chimeric nucleotide sequence from the CD2v protein gene (EP402R, nucleotides from 49 to 651) from the MK-200 strain (seroimmunotype III). Vaccination with the ASFV vaccine strain FK-32/135 protects pigs from the disease caused by the strain with homologous seroimmunotype-France-32 (seroimmunotype IV). Our attempt to create balanced protection against virulent strain Mozambique-78 (seroimmunotype III) by induction of both humoral factors of immunity (by vaccination with strain FK-32/135 of seroimmunotype IV) and serotype-specific cellular immunity (by immunization with the plasmid pUBB76A_CD2v of seroimmunotype III) was unsuccessful.

3.
Viruses ; 15(2)2023 02 03.
Article in English | MEDLINE | ID: mdl-36851644

ABSTRACT

African swine fever virus (ASFV) is an extremely genetically and phenotypically heterogeneous pathogen. Previously, we have demonstrated that experimental inoculation of pigs with an attenuated strain, Katanga-350 (genotype I, seroimmunotype I) (ASFV-Katanga-350), can induce protective immunity in 80% of European domestic pigs against the homologous virulent European strain Lisbon-57. At least 50% of the surviving pigs received protection from subsequent intramuscular infection with a heterologous virulent strain, Stavropol 01/08 (genotype II, seroimmunotype VIII) (ASFV-Stavropol 01/08). In this study, we assessed clinical signs, the levels of viremia, viral DNA, anti-ASFV antibodies and post-mortem changes caused by subsequent intramuscular injection with ASFV-Katanga-350 and heterologous ASFV-Stavropol 01/08. Inoculation of pigs with the ASFV-Katanga-350 did not protect animals from the disease in the case of the subsequent challenged ASFV-Stavropol 01/08. However, 40% of pigs were protected from death. Moreover, the surviving animals showed no pathomorphological changes or the presence of an infectious virus in the organs after euthanasia at 35 days post challenging. The ability/inability of attenuated strains to form a certain level of protection against heterologous isolates needs a theoretical background and experimental confirmation.


Subject(s)
African Swine Fever Virus , Swine , Animals , Democratic Republic of the Congo , Sus scrofa , DNA, Viral , Genotype
4.
Viruses ; 14(8)2022 07 26.
Article in English | MEDLINE | ID: mdl-35893695

ABSTRACT

The African swine fever virus (ASFV) is the cause of a recent pandemic that is threatening the global pig industry. The virus infects domestic and wild pigs and manifests with a variety of clinical symptoms, depending on the strain. No commercial vaccine is currently available to protect animals from this virus, but some attenuated and recombinant live vaccine candidates might be effective against the disease. This article describes the immunobiological characteristics of one such candidate-the laboratory-attenuated ASFV strain, Katanga-350-which belongs to genotype I. In this study, we assessed clinical signs and post-mortem changes, the levels of viremia and the presence of viral DNA caused by injection of ASF virus strains Katanga-350, Lisbon-57, and Stavropol 08/01. Intramuscular injection of this strain protected 80% of pigs from a virulent strain of the same genotype and seroimmunotype (Lisbon-57). At least 50% of the surviving pigs received protection from subsequent intramuscular infection with a heterologous (genotype II, seroimmunotype VIII) virulent strain (Stavropol 08/01). Virus-specific antibodies were detectable in serum and saliva samples between 8-78 days after the first inoculation of the Katanga-350 strain (the observational period). The results suggested that this strain could serve as a basis for the development of a recombinant vaccine against ASF viruses belonging to seroimmunotype I.


Subject(s)
African Swine Fever Virus , African Swine Fever , Viral Vaccines , Animals , Democratic Republic of the Congo , Swine , Vaccines, Synthetic
5.
PLoS One ; 17(7): e0270641, 2022.
Article in English | MEDLINE | ID: mdl-35797376

ABSTRACT

African swine fever (ASF) is an infectious disease of domestic and wild pigs of all breeds and ages, with the acute form of the disease being characterized by high fever, hemorrhages in the reticuloendothelial system and a high mortality rate. Registered safe and efficacious ASF vaccines are not available. The development of experimental ASF vaccines, particularly live attenuated, have considerably intensified in the last years. There is much variability in experimental approaches undertaken by laboratories attempting to develop first generation vaccines, rendering it difficult to interpret and make comparisons across trials. ASF virus (ASFV) genotyping does not fully correlate with available cross-protection data and may be of limited value in predicting cross-protective vaccine efficacy. Recently, ASFV strains were assigned to a respective nine groups by seroimmunotype (from I to IX): in vivo the grouping is based on results of cross protection of pigs survived after their infection with a virulent strain (bioassay), while in vitro this grouping is based on hemadsorption inhibition assay (HADIA) data. Here we demonstrate the antigenic and protective properties of two attenuated ASFV strains MK200 and FK-32/135. Pronounced differences in the HADIA and in immunological test in animals allow us to consider them and the corresponding reference virulent strains of the ASFV of Mozambique-78 (seroimmunotype III, genotype V) and France-32 (seroimmunotype IV, genotype I) as useful models for studying the mechanisms of protective immunity and evaluation of the candidate vaccines.


Subject(s)
African Swine Fever Virus , African Swine Fever , Viral Vaccines , Animals , France , Genotype , Macrophages , Swine
6.
Pathogens ; 11(4)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35456079

ABSTRACT

African swine fever virus causes hemorrhagic disease in swine. Attenuated strains are reported in Africa, Europe, and Asia. Few studies on the diagnostic detection of attenuated ASF viruses are available. Two groups of pigs were inoculated with an attenuated ASFV. Group 2 was also vaccinated with an attenuated porcine reproductive and respiratory syndrome virus vaccine. Commercially available ELISA, as well as extraction and qPCR assays, were used to detect antibodies in serum and oral fluids (OF) and nucleic acid in buccal swabs, tonsillar scrapings, OF, and blood samples collected over 93 days, respectively. After 12 dpi, serum (88.9% to 90.9%) in Group 1 was significantly better for antibody detection than OF (0.7% to 68.4%). Group 1's overall qPCR detection was highest in blood (48.7%) and OF (44.2%), with the highest detection in blood (85.2%) from 8 to 21 days post inoculation (dpi) and in OF (83.3%) from 1 to 7 dpi. Group 2's results were not significantly different from Group 1, but detection rates were lower overall. Early detection of attenuated ASFV variants requires active surveillance in apparently healthy animals and is only reliable at the herd level. Likewise, antibody testing will be needed to prove freedom from disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...