Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 13(2)2021 02 02.
Article in English | MEDLINE | ID: mdl-33540884

ABSTRACT

Snakes of the genera Pseudocerastes and Eristicophis (Viperidae: Viperinae) are known as the desert vipers due to their association with the arid environments of the Middle East. These species have received limited research attention and little is known about their venom or ecology. In this study, a comprehensive analysis of desert viper venoms was conducted by visualising the venom proteomes via gel electrophoresis and assessing the crude venoms for their cytotoxic, haemotoxic, and neurotoxic properties. Plasmas sourced from human, toad, and chicken were used as models to assess possible prey-linked venom activity. The venoms demonstrated substantial divergence in composition and bioactivity across all experiments. Pseudocerastes urarachnoides venom activated human coagulation factors X and prothrombin and demonstrated potent procoagulant activity in human, toad, and chicken plasmas, in stark contrast to the potent neurotoxic venom of P. fieldi. The venom of E. macmahonii also induced coagulation, though this did not appear to be via the activation of factor X or prothrombin. The coagulant properties of P. fieldi and P. persicus venoms varied among plasmas, demonstrating strong anticoagulant activity in the amphibian and human plasmas but no significant effect in that of bird. This is conjectured to reflect prey-specific toxin activity, though further ecological studies are required to confirm any dietary associations. This study reinforces the notion that phylogenetic relatedness of snakes cannot readily predict venom protein composition or function. The significant venom variation between these species raises serious concerns regarding antivenom paraspecificity. Future assessment of antivenom is crucial.


Subject(s)
Blood Coagulation/drug effects , Neuromuscular Junction/drug effects , Predatory Behavior , Reptilian Proteins/toxicity , Snake Bites/metabolism , Venoms/toxicity , Viperidae/metabolism , Animals , Anura , Cell Line, Tumor , Chickens , Humans , Male , Neuromuscular Junction/physiopathology , Proteome , Proteomics , Reptilian Proteins/metabolism , Snake Bites/blood , Snake Bites/physiopathology , Species Specificity , Venoms/metabolism
2.
J Virol Methods ; 193(1): 28-41, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23684847

ABSTRACT

In order to reduce the time required for the development and production of viral vaccines, host cell lines should be available as expression systems for production of viral vaccines against groups of viral pathogens. A selection of cell lines was compared for their initial feasibility as expression system for the replication of polioviruses, influenza A viruses and respiratory syncytial virus (wild type strain A2). Six adherent cell lines (Vero, HEK-293, MRC-5, CHO-K1, BHK-21 c13, MDCK) and six single cell suspension cell lines (CAP, AGE1.CR.HS, sCHO-K1, BHK-21 c13 2p, MDCK SFS) were studied for their ability to propagate viruses. First, maximum cell densities were determined. Second, virus receptor expression and polarization of the cell lines regarding receptor distribution of eight different viruses were monitored using flow cytometry and immunocytochemistry. Organization of the actin cytoskeleton was studied by transfection of the cells with Lifeact™, a construct coding for actin-EGFP. Finally, the ability to produce virus progeny of the viruses studied was assayed for each cell line. The results suggest that single cell suspension cell lines grown on serum free medium are the best candidates to serve as host cell lines for virus replication.


Subject(s)
Technology, Pharmaceutical/methods , Viral Vaccines/isolation & purification , Animals , Cell Line , Cell Proliferation , Cytoskeleton/metabolism , Flow Cytometry , Humans , Immunohistochemistry , Influenza A virus/growth & development , Poliovirus/growth & development , Receptors, Virus/analysis , Respiratory Syncytial Viruses/growth & development , Virus Cultivation/methods , Virus Replication
3.
J Med Chem ; 52(3): 763-70, 2009 Feb 12.
Article in English | MEDLINE | ID: mdl-19123857

ABSTRACT

The novel luminescent gold(I) complex [N-(N',N'-dimethylaminoethyl)-1,8-naphthalimide-4-sulfide](triethylphosphine)gold(I) was prepared and investigated for its primary biological properties. Cell culture experiments revealed strong antiproliferative effects and induction of apoptosis via mitochondrial pathways. Biodistribution studies by fluorescence microscopy and atomic absorption spectroscopy showed the uptake into cell organelles, an accumulation in the nuclei of tumor cells, and a homogeneous distribution in zebrafish embryos. In vivo monitoring of vascularisation in developing zebrafish embryos revealed a significant anti-angiogenic potency of the complex. Mechanistic experiments indicated that the inhibition of thioredoxin reductase (based on the covalent binding of a gold triethylphosphine fragment) might be involved in the pharmacodynamic behavior of this novel gold species.


Subject(s)
Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Organogold Compounds/chemical synthesis , Organogold Compounds/pharmacology , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Animals , Apoptosis/drug effects , Embryo, Nonmammalian/drug effects , HT29 Cells , Humans , Maximum Tolerated Dose , Microscopy, Confocal , Tandem Mass Spectrometry , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...