Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 294(12): 4634-4643, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30674550

ABSTRACT

Murine paired immunoglobulin receptor B (PirB) and its human ortholog leukocyte immunoglobulin-like receptor B2 (LILRB2) are widely expressed inhibitory receptors that interact with a diverse set of extracellular ligands and exert functions ranging from down-regulation of immune responses to inhibition of neuronal growth. However, structural information that could shed light on how PirB interacts with its ligands is lacking. Here, we report crystal structures of the PirB ectodomain; the first full ectodomain structure for a LILR family member, at 3.3-4.5 Å resolution. The structures reveal that PirB's six Ig-like domains are arranged at acute angles, similar to the structures of leukocyte immunoglobulin-like receptor (LILR) and killer-cell immunoglobulin-like receptor (KIR). We observe that this regular arrangement is followed throughout the ectodomain, resulting in an extended zigzag conformation. In two out of the five structures reported here, the repeating zigzag is broken by the first domain that can adopt two alternative orientations. Quantitative binding experiments revealed a 9 µm dissociation constant for PirB-myelin-associated glycoprotein (MAG) ectodomain interactions. Taken together, these structural findings and the observed PirB-MAG interactions are compatible with a model for intercellular signaling in which the PirB extracellular domains, which point away from the cell surface, enable interaction with ligands in trans.


Subject(s)
Receptors, Immunologic/chemistry , Animals , Crystallography, X-Ray , Ligands , Mice , Protein Binding , Protein Conformation , Protein Domains , Surface Plasmon Resonance
2.
J Lipid Res ; 59(3): 515-530, 2018 03.
Article in English | MEDLINE | ID: mdl-29343537

ABSTRACT

Ceramides are central intermediates of sphingolipid metabolism with dual roles as mediators of cellular stress signaling and mitochondrial apoptosis. How ceramides exert their cytotoxic effects is unclear and their poor solubility in water hampers a search for specific protein interaction partners. Here, we report the application of a photoactivatable and clickable ceramide analog, pacCer, to identify ceramide binding proteins and unravel the structural basis by which these proteins recognize ceramide. Besides capturing ceramide transfer protein (CERT) from a complex proteome, our approach yielded CERT-related steroidogenic acute regulatory protein D7 (StarD7) as novel ceramide binding protein. Previous work revealed that StarD7 is required for efficient mitochondrial import of phosphatidylcholine (PC) and serves a critical role in mitochondrial function and morphology. Combining site-directed mutagenesis and photoaffinity labeling experiments, we demonstrate that the steroidogenic acute regulatory transfer domain of StarD7 harbors a common binding site for PC and ceramide. While StarD7 lacks robust ceramide transfer activity in vitro, we find that its ability to shuttle PC between model membranes is specifically affected by ceramides. Besides demonstrating the suitability of pacCer as a tool to hunt for ceramide binding proteins, our data point at StarD7 as a candidate effector protein by which ceramides may exert part of their mitochondria-mediated cytotoxic effects.


Subject(s)
Carrier Proteins/metabolism , Ceramides/metabolism , Lipids , Carrier Proteins/biosynthesis , HeLa Cells , Humans , Mitochondria/metabolism
3.
Angew Chem Int Ed Engl ; 56(52): 16546-16549, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29108098

ABSTRACT

The calcium-dependent antibiotics (CDAs) are an important emerging class of antibiotics. The crystal structure of the CDA laspartomycin C in complex with calcium and the ligand geranyl-phosphate at a resolution of 1.28 Šis reported. This is the first crystal structure of a CDA bound to its bacterial target. The structure is also the first to be reported for an antibiotic that binds the essential bacterial phospholipid undecaprenyl phosphate (C55 -P). These structural insights are of great value in the design of antibiotics capable of exploiting this unique bacterial target.


Subject(s)
Anti-Bacterial Agents/chemistry , Lipopeptides/chemistry , Peptides, Cyclic/chemistry , Calcium/chemistry , Crystallography, X-Ray , Molecular Conformation , Streptomyces/chemistry , Streptomyces/metabolism
4.
Acta Crystallogr D Struct Biol ; 73(Pt 11): 860-876, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29095159

ABSTRACT

The Nogo Receptor (NgR) is a glycophosphatidylinositol-anchored cell-surface protein and is a receptor for three myelin-associated inhibitors of regeneration: myelin-associated glycoprotein, Nogo66 and oligodendrocyte myelin glycoprotein. In combination with different co-receptors, NgR mediates signalling that reduces neuronal plasticity. The available structures of the NgR ligand-binding leucine-rich repeat (LRR) domain have an artificial disulfide pattern owing to truncated C-terminal construct boundaries. NgR has previously been shown to self-associate via its LRR domain, but the structural basis of this interaction remains elusive. Here, crystal structures of the NgR LRR with a longer C-terminal segment and a native disulfide pattern are presented. An additional C-terminal loop proximal to the C-terminal LRR cap is stabilized by two newly formed disulfide bonds, but is otherwise mostly unstructured in the absence of any stabilizing interactions. NgR crystallized in six unique crystal forms, three of which share a crystal-packing interface. NgR crystal-packing interfaces from all eight unique crystal forms are compared in order to explore how NgR could self-interact on the neuronal plasma membrane.


Subject(s)
Crystallography, X-Ray , Disulfides/chemistry , Nogo Receptors/chemistry , Amino Acid Sequence , Animals , Catalytic Domain , Crystallization , Disulfides/metabolism , Mice , Models, Molecular , Nogo Receptors/metabolism , Protein Conformation , Protein Multimerization , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL
...