Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Aquat Toxicol ; 261: 106607, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37354817

ABSTRACT

Several adverse outcome pathways (AOPs) have linked molecular initiating events like aromatase inhibition, androgen receptor (AR) agonism, and estrogen receptor (ER) antagonism to reproductive impairment in adult fish. Estrogen receptor agonists can also cause adverse reproductive effects, however, the early key events (KEs) in an AOP leading to this are mostly unknown. The primary aim of this study was to develop hypotheses regarding the potential mechanisms through which exposure to ER agonists might lead to reproductive impairment in female fish. Mature fathead minnows were exposed to 1 or 10 ng 17α-ethynylestradiol (EE2)/L or 10 or 100 µg bisphenol A (BPA)/L for 14 d. The response to EE2 and BPA was contrasted with the effects of 500 ng/L of 17ß-trenbolone (TRB), an AR agonist, as well as TRB combined with the low and high concentrations of EE2 or BPA tested individually. Exposure to 10 ng EE2/L, 100 µg BPA/L, TRB, or the various mixtures with TRB caused significant decreases in plasma concentrations of 17ß-estradiol. Exposure to TRB alone caused a significant reduction in plasma vitellogenin (VTG), but VTG was unaffected or even increased in females exposed to EE2 or BPA alone or, in most cases, in mixtures with TRB. Over the course of the 14-d exposure, the only treatments that clearly did not affect egg production were 1 ng EE2/L and 10 µg BPA/L. Based on these results and knowledge of hypothalamic-pituitary-gonadal axis function, we hypothesize an AOP whereby decreased production of maturation-inducing steroid leading to impaired oocyte maturation and ovulation, possibly due to negative feedback or direct inhibitory effects of membrane ER activation, could be responsible for causing adverse reproductive impacts in female fish exposed to ER agonists.


Subject(s)
Adverse Outcome Pathways , Cyprinidae , Water Pollutants, Chemical , Animals , Female , Androgens/metabolism , Water Pollutants, Chemical/toxicity , Estrogens/toxicity , Estrogens/metabolism , Ethinyl Estradiol/toxicity , Ethinyl Estradiol/metabolism , Cyprinidae/metabolism , Vitellogenins/metabolism
2.
Toxicol Sci ; 193(2): 131-145, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37071731

ABSTRACT

The U.S. Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP) is tasked with assessing chemicals for their potential to perturb endocrine pathways, including those controlled by androgen receptor (AR). To address challenges associated with traditional testing strategies, EDSP is considering in vitro high-throughput screening assays to screen and prioritize chemicals more efficiently. The ability of these assays to accurately reflect chemical interactions in nonmammalian species remains uncertain. Therefore, a goal of the EDSP is to evaluate how broadly results can be extrapolated across taxa. To assess the cross-species conservation of AR-modulated pathways, computational analyses and systematic literature review approaches were used to conduct a comprehensive analysis of existing in silico, in vitro, and in vivo data. First, molecular target conservation was assessed across 585 diverse species based on the structural similarity of ARs. These results indicate that ARs are conserved across vertebrates and are predicted to share similarly susceptibility to chemicals that interact with the human AR. Systematic analysis of over 5000 published manuscripts was used to compile in vitro and in vivo cross-species toxicity data. Assessment of in vitro data indicates conservation of responses occurs across vertebrate ARs, with potential differences in sensitivity. Similarly, in vivo data indicate strong conservation of the AR signaling pathways across vertebrate species, although sensitivity may vary. Overall, this study demonstrates a framework for utilizing bioinformatics and existing data to build weight of evidence for cross-species extrapolation and provides a technical basis for extrapolating hAR-based data to prioritize hazard in nonmammalian vertebrate species.


Subject(s)
Endocrine Disruptors , Receptors, Androgen , Animals , United States , Humans , Receptors, Androgen/metabolism , United States Environmental Protection Agency , Endocrine System/chemistry , Endocrine System/metabolism , Endocrine Disruptors/toxicity , Endocrine Disruptors/chemistry , High-Throughput Screening Assays/methods
3.
J Vis Exp ; (192)2023 02 10.
Article in English | MEDLINE | ID: mdl-36847398

ABSTRACT

The US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool is a fast, freely available, online screening application that allows researchers and regulators to extrapolate toxicity information across species. For biological targets in model systems such as human cells, mice, rats, and zebrafish, toxicity data are available for a variety of chemicals. Through the evaluation of protein target conservation, this tool can be used to extrapolate data generated from such model systems to thousands of other species lacking toxicity data, yielding predictions of relative intrinsic chemical susceptibility. The latest releases of the tool (versions 2.0-6.1) have incorporated new features that allow for the rapid synthesis, interpretation, and use of the data for publication plus presentation-quality graphics. Among these features are customizable data visualizations and a comprehensive summary report designed to summarize SeqAPASS data for ease of interpretation. This paper describes the protocol to guide users through submitting jobs, navigating the various levels of protein sequence comparisons, and interpreting and displaying the resulting data. New features of SeqAPASS v2.0-6.0 are highlighted. Furthermore, two use-cases focused on transthyretin and opioid receptor protein conservation using this tool are described. Finally, SeqAPASS' strengths and limitations are discussed to define the domain of applicability for the tool and highlight different applications for cross-species extrapolation.


Subject(s)
Proteins , Zebrafish , Mice , Rats , Animals , Humans , Sequence Alignment , Amino Acid Sequence
4.
Environ Toxicol Chem ; 42(4): 757-777, 2023 04.
Article in English | MEDLINE | ID: mdl-36789969

ABSTRACT

Multiple in vivo test guidelines focusing on the estrogen, androgen, thyroid, and steroidogenesis pathways have been developed and validated for mammals, amphibians, or fish. However, these tests are resource-intensive and often use a large number of laboratory animals. Developing alternatives for in vivo tests is consistent with the replacement, reduction, and refinement principles for animal welfare considerations, which are supported by increasing mandates to move toward an "animal-free" testing paradigm worldwide. New approach methodologies (NAMs) hold great promise to identify molecular, cellular, and tissue changes that can be used to predict effects reliably and more efficiently at the individual level (and potentially on populations) while reducing the number of animals used in (eco)toxicological testing for endocrine disruption. In a collaborative effort, experts from government, academia, and industry met in 2020 to discuss the current challenges of testing for endocrine activity assessment for fish and amphibians. Continuing this cross-sector initiative, our review focuses on the current state of the science regarding the use of NAMs to identify chemical-induced endocrine effects. The present study highlights the challenges of using NAMs for safety assessment and what work is needed to reduce their uncertainties and increase their acceptance in regulatory processes. We have reviewed the current NAMs available for endocrine activity assessment including in silico, in vitro, and eleutheroembryo models. New approach methodologies can be integrated as part of a weight-of-evidence approach for hazard or risk assessment using the adverse outcome pathway framework. The development and utilization of NAMs not only allows for replacement, reduction, and refinement of animal testing but can also provide robust and fit-for-purpose methods to identify chemicals acting via endocrine mechanisms. Environ Toxicol Chem 2023;42:757-777. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Endocrine Disruptors , Animals , Endocrine Disruptors/toxicity , Endocrine Disruptors/analysis , Fishes , Ecotoxicology , Amphibians , Endocrine System , Risk Assessment , Mammals
5.
Environ Toxicol Chem ; 42(2): 463-474, 2023 02.
Article in English | MEDLINE | ID: mdl-36524855

ABSTRACT

Computational screening for potentially bioactive molecules using advanced molecular modeling approaches including molecular docking and molecular dynamic simulation is mainstream in certain fields like drug discovery. Significant advances in computationally predicting protein structures from sequence information have also expanded the availability of structures for nonmodel species. Therefore, the objective of the present study was to develop an analysis pipeline to harness the power of these bioinformatics approaches for cross-species extrapolation for evaluating chemical safety. The Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool compares protein-sequence similarity across species for conservation of known chemical targets, providing an initial line of evidence for extrapolation of toxicity knowledge. However, with the development of structural models from tools like the Iterative Threading ASSEmbly Refinement (ITASSER), analyses of protein structural conservation can be included to add further lines of evidence and generate protein models across species. Models generated through such a pipeline could then be used for advanced molecular modeling approaches in the context of species extrapolation. Two case examples illustrating this pipeline from SeqAPASS sequences to I-TASSER-generated protein structures were created for human liver fatty acid-binding protein (LFABP) and androgen receptor (AR). Ninety-nine LFABP and 268 AR protein models representing diverse species were generated and analyzed for conservation using template modeling (TM)-align. The results from the structural comparisons were in line with the sequence-based SeqAPASS workflow, adding further evidence of LFABL and AR conservation across vertebrate species. The present study lays the foundation for expanding the capabilities of the web-based SeqAPASS tool to include structural comparisons for species extrapolation, facilitating more rapid and efficient toxicological assessments among species with limited or no existing toxicity data. Environ Toxicol Chem 2023;42:463-474. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
Chemical Safety , Humans , Molecular Docking Simulation , Amino Acid Sequence , Proteins/chemistry , Molecular Dynamics Simulation
6.
Environ Toxicol Chem ; 40(6): 1586-1595, 2021 06.
Article in English | MEDLINE | ID: mdl-33523501

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are pervasive pollutants in aquatic ecosystems, and developing fish embryos are especially sensitive to PAH exposure. Exposure to crude oil or phenanthrene (a reference PAH found in oil) produces an array of gross morphological abnormalities in developing fish embryos, including cardiotoxicity. Recently, studies utilizing transcriptomic analyses in several oil-exposed fish embryos found significant changes in the abundance of transcripts involved in cholesterol biosynthesis. Given the vital role of cholesterol availability in embryonic heart development, we hypothesized that cholesterol dysregulation in early development contributes to phenanthrene-induced cardiotoxicity. We exposed zebrafish embryos to 12 or 15 µM phenanthrene from 6 to 72 h post fertilization (hpf) and demonstrated that, in conjunction with pericardial edema and bradycardia, several genes (fdft1 and hmgcra) in the cholesterol biosynthetic pathway were significantly altered. When embryos were pretreated with a cholesterol solution from 6 to 24 hpf followed by exposure to phenanthrene from 24 to 48 hpf, the effects of phenanthrene on heart rate were partially mitigated. Despite changes in gene expression, whole-mount in situ staining of cholesterol was not significantly affected in embryos exposed to phenanthrene ranging in stage from 24 to 72 hpf. However, the 2-dimensional yolk area was significantly increased with phenanthrene exposure at 72 hpf, suggesting that lipid transport from the yolk to the developing embryo was impaired. Environ Toxicol Chem 2021;40:1586-1595. © 2021 SETAC.


Subject(s)
Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Cardiotoxicity/metabolism , Cholesterol/metabolism , Cholesterol/pharmacology , Ecosystem , Embryo, Nonmammalian , Homeostasis , Phenanthrenes/metabolism , Phenanthrenes/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/metabolism , Zebrafish
7.
Toxicol In Vitro ; 72: 105016, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33049310

ABSTRACT

Sensitivity to potential endocrine disrupting chemicals in the environment varies across species and is influenced by sequence conservation of their nuclear receptor targets. Here, we evaluated a multiplexed, in vitro assay testing receptors relevant to endocrine and metabolic disruption from five species. The TRANS-FACTORIAL™ system of human nuclear receptors was modified to include additional species: mouse (Mus musculus), frog (Xenopus laevis), zebrafish (Danio rerio), chicken (Gallus gallus), and turtle (Chrysemys picta). Receptors regulating endocrine function and xenobiotic recognition were included, specifically: ERα, ERß, AR, TRα, TRß, PPARγ and PXR. The assay, ECOTOX-FACTORIAL™, was evaluated with 191 chemicals enriched with known receptor ligands. Hierarchical clustering of potency values demonstrated strong coherence of receptor families. Interspecies comparisons of responses within a receptor family showed moderate to high concordance for potencies under 50 µM. PPARγ showed high concordance between mammalian species, 89%, but only 63% between mammalian and zebrafish. For chemicals with potencies below 1 µM, concordances were 89-100% for all receptors except PXR. Concordance showed a strong positive relationship to ligand-binding domain sequence similarity and critical amino acid residues obtained by the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool. In combination with SeqAPASS, ECOTOX-FACTORIAL may provide efficient screening of important receptors to identify species of high priority for effects monitoring.


Subject(s)
Biological Assay/methods , Hazardous Substances/toxicity , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Chickens , Hep G2 Cells , Humans , Mice , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Turtles , Xenopus laevis , Zebrafish
8.
Aquat Toxicol ; 216: 105312, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31563086

ABSTRACT

Many coastal systems have been experiencing the effects of non-chemical and chemical anthropological stressors through respective increases in surface water temperatures and rainstorm-derived runoff events of pyrethroid pesticide movement into waterways such as the San Francisco Bay-Delta. Salmonid populations in the Bay-Delta have been dramatically declining in recent decades. Therefore, the aim of this study was to investigate the interactive effects of bifenthrin, a pyrethroid insecticide, and increasing water temperatures on targeted neuroendocrine and behavioral responses in Chinook salmon (Oncorhynchus tshawytscha) parr (10- month post-hatch). Parr were reared at 11 °C, 16.4 °C, or 19 °C for 14 days and, in the final 96 h of rearing, exposed to nominal concentrations of 0, 0.15, or 1.5 µg/L bifenthrin. A predatory avoidance Y-Maze behavioral assay was conducted immediately following exposures. Parr were presented a choice of clean or odorant zones, and locomotive behavior was recorded. Thyroid hormones (T3 and T4), estradiol, and testosterone were quantified within plasma using ELISAs, and the expression of brain hormone and dopamine receptor genes were also evaluated by qPCR. Brain dopamine levels were analyzed by LC/MS. No significant changes were observed in brain transcripts or plasma hormone concentrations with bifenthrin or increasing temperature. However, temperature did significantly lower brain dopamine levels in fish reared at 19 °C compared to 11 °C controls, but was unaltered by bifenthrin treatment. In contrast, parr reared at 11 °C and exposed to 1.5 µg/L bifenthrin spent significantly less time avoiding a predatory odorant compared to vehicle controls reared at 11 °C. The 16.4 °C and 1.5 µg/L-treated fish spent significantly more time in the neutral arm compared to the odorant and clean arms, as well as spending significantly less time in the clean arm compared to the 11 °C control fish. These results suggest that the interaction of temperature and bifenthrin may be adversely impacting predator-avoidance behavior, which may not be related to dopaminergic responses.


Subject(s)
Avoidance Learning/drug effects , Predatory Behavior/drug effects , Pyrethrins/toxicity , Salmon/physiology , Temperature , Animals , Brain/drug effects , Brain/metabolism , Dopamine/metabolism , Gene Expression Regulation/drug effects , Hormones/metabolism , Water Pollutants, Chemical/toxicity
9.
Toxicol Appl Pharmacol ; 380: 114699, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31398420

ABSTRACT

Niclosamide is an antihelminthic drug used worldwide for the treatment of tapeworm infections. Recent drug repurposing screens have highlighted the broad bioactivity of niclosamide across diverse mechanisms of action. As a result, niclosamide is being evaluated for a range of alternative drug-repurposing applications, including the treatment of cancer, bacterial infections, and Zika virus. As new applications of niclosamide will require non-oral delivery routes that may lead to exposure in utero, it is important to understand the mechanism of niclosamide toxicity during early stages of embryonic development. Previously, we showed that niclosamide induces a concentration-dependent delay in epiboly progression in the absence of effects on oxidative phosphorylation - a well-established target for niclosamide. Therefore, the overall objective of this study was to further examine the mechanism of niclosamide-induced epiboly delay during zebrafish embryogenesis. Based on this study, we found that (1) niclosamide exposure during early zebrafish embryogenesis resulted in a decrease in yolk sac integrity with a concomitant decrease in the presence of yolk sac actin networks and increase in cell size; (2) within whole embryos, niclosamide exposure did not alter non-polar metabolites and lipids, but significantly altered amino acids specific to aminoacyl-tRNA biosynthesis; (3) niclosamide significantly altered transcripts related to translation, transcription, and mRNA processing pathways; and (4) niclosamide did not significantly alter levels of rRNA and tRNA. Overall, our findings suggest that niclosamide may be causing a systemic delay in embryonic development by disrupting the translation of maternally-supplied mRNAs, an effect that may be mediated through disruption of aminoacyl-tRNA biosynthesis.


Subject(s)
Anthelmintics/toxicity , Embryo, Nonmammalian/drug effects , Embryonic Development/drug effects , Niclosamide/toxicity , Zebrafish/metabolism , Animals , Cell Line , Embryo, Nonmammalian/metabolism , Humans , Metabolomics , RNA/metabolism , Yolk Sac/drug effects , Yolk Sac/metabolism , Zebrafish/genetics , Zygote
10.
Environ Sci Technol ; 53(17): 10497-10505, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31385694

ABSTRACT

Tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) is a high-production-volume organophosphate flame retardant (OPFR) that induces epiboly defects during zebrafish embryogenesis, leading to the disruption of dorsoventral patterning. Therefore, the objectives of this study were to (1) identify the potential mechanisms involved in TDCIPP-induced epiboly defects and (2) determine whether coexposure to triphenyl phosphate (TPHP)-an OPFR commonly detected with TDCIPP-enhances or mitigates epiboly defects. Although TDCIPP-induced epiboly defects were not associated with adverse impacts on cytoskeletal protein abundance in situ, the coexposure of embryos to TPHP partially blocked TDCIPP-induced epiboly defects. As nuclear receptors are targets for both TPHP and TDCIPP, we exposed the embryos to TDCIPP in the presence or absence of 69 nuclear receptor ligands and, similar to TPHP, found that ciglitazone (a peroxisome proliferator-activated receptor γ agonist) and 17ß-estradiol (E2; an estrogen receptor α agonist) nearly abolished TDCIPP-induced epiboly defects. Moreover, E2 and ciglitazone mitigated TDCIPP-induced effects on CpG hypomethylation within the target loci prior to epiboly, and ciglitazone altered TDCIPP-induced effects on the abundance of two polar metabolites (acetylcarnitine and cytidine-5-diphosphocholine) during epiboly. Overall, our results point to a complex interplay among nuclear receptor ligands, cytosine methylation, and the metabolome in both the induction and mitigation of epiboly defects induced by TDCIPP.


Subject(s)
Flame Retardants , Zebrafish , Animals , Cytosine , Ligands , Metabolome , Organophosphates , Organophosphorus Compounds , Phosphates
11.
Sci Total Environ ; 651(Pt 2): 2424-2431, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30336432

ABSTRACT

Bifenthrin (BF) is a pyrethroid insecticide widely used in urban and agricultural applications. Previous studies in embryos of zebrafish have shown that BF can affect estradiol biosynthesis and the dopaminergic system. To examine the role of the estrogen receptor (ER) in the endocrine effects of BF, embryos were exposed for 96 h to a mixture of 0.15 and 1.5 µg/L BF and an ER agonist (17α-ethynylestradiol - EE2) at 0.09 µg/L. Transcripts related to estrogenic (vitellogenin VTG) and dopaminergic (tyrosine hydroxylase (TH), dopamine receptor 1 (DR1), monoamine oxidase (MAO), and catechol-O-methyltransferase b (COMTb)) signaling pathways were investigated by qRT-PCR. Dopamine (DA) and its metabolites (homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC)) were also measured. There was a significant increase in VTG, DR1, MAO and COMTb mRNA levels and HVA-DA ratios within all zebrafish embryos exposed to EE2, including EE2 alone, 0.15 µg/L BF + EE2 and 1.5 µg/L BF + EE2. A significant decrease in homogenate concentrations of DA was observed within all zebrafish embryos exposed to EE2, which included EE2 alone, 0.15 µg/L BF + EE2 and 1.5 µg/L BF + EE2. Co-exposure of BF with EE2 failed to diminish estrogenic or dopaminergic signaling in embryos. Additionally, embryos with diminished ERα expression by morpholino injection were exposed to 0.15 µg/L BF, 1.5 µg/L BF and 0.09 µg/L EE2, with subsequent gene expression measurements. ERα knockdown did not prevent the effects of BF, indicating ERα may have a limited role in the estrogenic and dopaminergic effects caused by BF in zebrafish embryos.


Subject(s)
Dopamine/physiology , Estrogen Receptor alpha/genetics , Estrogens/physiology , Insecticides/adverse effects , Pyrethrins/adverse effects , Signal Transduction/drug effects , Zebrafish Proteins/genetics , Zebrafish/physiology , Animals , Estrogen Receptor alpha/metabolism , Zebrafish Proteins/metabolism
12.
Environ Sci Technol ; 52(18): 10820-10828, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30157643

ABSTRACT

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is an organophosphate flame retardant used around the world. Within zebrafish, we previously showed that initiation of TDCIPP exposure during cleavage (0.75 h post-fertilization, hpf) results in epiboly disruption at 6 hpf, leading to dorsalized embryos by 24 hpf, a phenotype that mimics the effects of dorsomorphin (DMP), a bone morphogenetic protein (BMP) antagonist that dorsalizes embryos in the absence of epiboly defects. The objective of this study was to (1) investigate the role of BMP signaling in TDCIPP-induced toxicity during early embryogenesis, (2) identify other pathways and processes targeted by TDCIPP, and (3) characterize the downstream impacts of early developmental defects. Using zebrafish as a model, we first identified a sensitive window for TDCIPP-induced effects following exposure initiation at 0.75 hpf. We then investigated the effects of TDCIPP on the transcriptome during the first 24 h of development using mRNA sequencing and amplicon sequencing. Finally, we relied on whole-mount immunohistochemistry, dye-based labeling, and morphological assessments to study abnormalities later in embryonic development. Overall, our data suggest that the initiation of TDCIPP exposure during early blastula alters the normal trajectory of early embryogenesis by inducing gastrulation defects and aberrant germ-layer formation, leading to abnormal tissue and organ development within the embryo.


Subject(s)
Flame Retardants , Zebrafish , Animals , Blastula , Organophosphorus Compounds , Phosphates
13.
Toxicol Sci ; 166(2): 306-317, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30165700

ABSTRACT

Niclosamide is an antihelminthic drug used worldwide for the treatment of tapeworm infections. Recent drug repurposing screens have revealed that niclosamide exhibits diverse mechanisms of action and, as a result, demonstrates promise for a number of applications, including the treatment of cancer, bacterial infections, and Zika virus. As new applications of niclosamide will require non-oral delivery routes that may lead to exposure in utero, the objective of this study was to investigate the mechanism of niclosamide toxicity during early stages of embryonic development. Using zebrafish as a model, we found that niclosamide induced a concentration-dependent delay in epiboly progression during late-blastula and early-gastrula, an effect that was dependent on exposure during the maternal-to-zygotic transition-a period characterized by degradation of maternally derived transcripts, zygotic genome activation, and initiation of cell motility. Moreover, we found that niclosamide did not affect embryonic oxygen consumption, suggesting that oxidative phosphorylation-a well-established target for niclosamide within intestinal parasites-may not play a role in niclosamide-induced epiboly delay. However, mRNA-sequencing revealed that niclosamide exposure during blastula and early-gastrula significantly impacted the timing of zygotic genome activation as well as the abundance of cytoskeleton- and cell cycle regulation-specific transcripts. In addition, we found that niclosamide inhibited tubulin polymerization in vitro, suggesting that niclosamide-induced delays in epiboly progression may, in part, be driven by disruption of microtubule formation and cell motility within the developing embryo.


Subject(s)
Cell Movement/drug effects , Niclosamide/toxicity , Zebrafish/embryology , Adenosine Triphosphate/pharmacology , Animals , Dose-Response Relationship, Drug , Embryo, Nonmammalian , Embryonic Development/drug effects , Microtubules/drug effects , Oxygen/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome/drug effects , Tubulin/drug effects , Tubulin Modulators
14.
PeerJ ; 5: e4156, 2017.
Article in English | MEDLINE | ID: mdl-29259843

ABSTRACT

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a high-production volume organophosphate flame retardant widely used within the United States. Within zebrafish, initiation of TDCIPP exposure at 0.75 h post-fertilization (hpf) results in genome-wide alterations in methylation during cleavage (2 hpf) as well as epiboly delay or arrest (at higher concentrations) during late-blastula and early-gastrula (4-6 hpf). To determine whether these TDCIPP-induced effects were associated with impacts on the transcriptome, embryos were exposed to vehicle (0.1% DMSO) or 2 µM TDCIPP from 0.75 hpf to 6 hpf, and total RNA was extracted from triplicate embryo pools per treatment and hybridized onto duplicate Affymetrix Zebrafish Gene 1.0 ST Arrays per RNA sample. Based on transcriptome-wide profiling, TDCIPP resulted in a significant impact on biological processes involved in dorsoventral patterning and bone morphogenetic protein (BMP) signaling. Consistent with these responses, TDCIPP exposure also resulted in strongly dorsalized embryos by 24 hpf-a phenotype that mimicked the effects of dorsomorphin, a potent and selective BMP inhibitor. Moreover, the majority of dorsalized embryos were preceded by epiboly arrest at 6 hpf. Our microarray data also revealed that the expression of sizzled (szl)-a gene encoding a secreted Frizzled-related protein that limits BMP signaling-was significantly decreased by nearly 4-fold at 6 hpf. Therefore, we used a splice-blocking morpholino to test the hypothesis that knockdown of szl phenocopies TDCIPP-induced delays in epiboly progression. Interestingly, contrary to our hypothesis, injection of szl MOs did not affect epiboly progression but, similar to chordin (chd) morphants, resulted in mildly ventralized embryos by 24 hpf. Overall, our findings suggest that TDCIPP-induced epiboly delay may not be driven by decreased szl expression, and that TDCIPP-induced dorsalization may-similar to dorsomorphin-be due to interference with BMP signaling during early zebrafish development.

15.
Toxicol Appl Pharmacol ; 329: 241-248, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28623180

ABSTRACT

Spontaneous activity represents an early, primitive form of motor activity within zebrafish embryos, providing a potential readout for identification of neuroactive compounds. However, despite use as an endpoint in chemical screens around the world, the predictive power and limitations of assays relying on spontaneous activity remain unclear. Using an improved high-content screening assay that increased throughput from 384 to 3072 wells per week, we screened a well-characterized library of 1280 pharmacologically active compounds (LOPAC1280) - 612 of which target neurotransmission - to identify which targets are detected using spontaneous activity as a readout. Results from this screen revealed that (1) 8% of the LOPAC1280 library was biologically active; (2) spontaneous activity was affected by compounds spanning a broad array of targets; (3) only 4% of compounds targeting neurotransmission impacted spontaneous activity; and (4) hypoactivity was observed for 100% of hits detected, including those that exhibit opposing mechanisms of action for the same target. Therefore, while this assay was able to rapidly identify potent neuroactive chemicals, these data suggest that spontaneous activity may lack the ability to discriminate modes of action for compounds interfering with neurotransmission, an issue that may be due to systemic uptake following waterborne exposure, persistent control variation, and/or interference with non-neurotransmission-related mechanisms.


Subject(s)
Behavior, Animal/drug effects , High-Throughput Screening Assays , Motor Activity/drug effects , Nervous System/drug effects , Neurotransmitter Agents/pharmacology , Small Molecule Libraries , Zebrafish/embryology , Animals , Animals, Genetically Modified , Data Mining , Embryo, Nonmammalian/drug effects , Nervous System/embryology , Nervous System/metabolism , Neurotransmitter Agents/toxicity , Reproducibility of Results , Synaptic Transmission/drug effects , Time Factors , Time-Lapse Imaging , Video Recording , Zebrafish/genetics , Zebrafish/metabolism
16.
BMC Pediatr ; 17(1): 112, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28446221

ABSTRACT

BACKGROUND: The case fatality rate of severely malnourished children during inpatient treatment is high and mortality is often associated with diarrhea. As intestinal carbohydrate absorption is impaired in severe acute malnutrition (SAM), differences in dietary formulations during nutritional rehabilitation could lead to the development of osmotic diarrhea and subsequently hypovolemia and death. We compared three dietary strategies commonly used during the transition of severely malnourished children to higher caloric feeds, i.e., F100 milk (F100), Ready-to-Use Therapeutic Food (RUTF) and RUTF supplemented with F75 milk (RUTF + F75). METHODS: In this open-label pilot randomized controlled trial, 74 Malawian children with SAM aged 6-60 months, were assigned to either F100, RUTF or RUTF + F75. Our primary endpoint was the presence of low fecal pH (pH ≤ 5.5) measured in stool collected 3 days after the transition phase diets were introduced. Secondary outcomes were duration of hospital stay, diarrhea and other clinical outcomes. Chi-square test, two-way analysis of variance and logistic regression were conducted and, when appropriate, age, sex and initial weight for height Z-scores were included as covariates. RESULTS: The proportion of children with acidic stool (pH ≤5.5) did not significantly differ between groups before discharge with 30, 33 and 23% for F100, RUTF and RUTF + F75, respectively. Mean duration of stay after transitioning was 7.0 days (SD 3.4) with no differences between the three feeding strategies. Diarrhea was present upon admission in 33% of patients and was significantly higher (48%) during the transition phase (p < 0.05). There was no significant difference in mortality (n = 6) between diets during the transition phase nor were there any differences in other secondary outcomes. CONCLUSIONS: This pilot trial does not demonstrate that a particular transition phase diet is significantly better or worse since biochemical and clinical outcomes in children with SAM did not differ. However, larger and more tightly controlled efficacy studies are needed to confirm these findings. TRIAL REGISTRATION: ISRCTN13916953 Registered: 14 January 2013.


Subject(s)
Food, Formulated , Severe Acute Malnutrition/diet therapy , Animals , Child , Child, Preschool , Female , Hospitalization , Humans , Infant , Logistic Models , Malawi , Male , Milk , Pilot Projects , Treatment Outcome
17.
Am J Clin Nutr ; 104(5): 1441-1449, 2016 11.
Article in English | MEDLINE | ID: mdl-27655441

ABSTRACT

BACKGROUND: Diarrhea affects a large proportion of children with severe acute malnutrition (SAM). However, its etiology and clinical consequences remain unclear. OBJECTIVE: We investigated diarrhea, enteropathogens, and systemic and intestinal inflammation for their interrelation and their associations with mortality in children with SAM. DESIGN: Intestinal pathogens (n = 15), cytokines (n = 29), fecal calprotectin, and the short-chain fatty acids (SCFAs) butyrate and propionate were determined in children aged 6-59 mo (n = 79) hospitalized in Malawi for complicated SAM. The relation between variables, diarrhea, and death was assessed with partial least squares (PLS) path modeling. RESULTS: Fatal subjects (n = 14; 18%) were younger (mean ± SD age: 17 ± 11 compared with 25 ± 11 mo; P = 0.01) with higher prevalence of diarrhea (46% compared with 18%, P = 0.03). Intestinal pathogens Shigella (36%), Giardia (33%), and Campylobacter (30%) predominated, but their presence was not associated with death or diarrhea. Calprotectin was significantly higher in children who died [median (IQR): 1360 mg/kg feces (2443-535 mg/kg feces) compared with 698 mg/kg feces (1438-244 mg/kg feces), P = 0.03]. Butyrate [median (IQR): 31 ng/mL (112-22 ng/mL) compared with 2036 ng/mL (5800-149 ng/mL), P = 0.02] and propionate [median (IQR): 167 ng/mL (831-131 ng/mL) compared with 3174 ng/mL (5819-357 ng/mL), P = 0.04] were lower in those who died. Mortality was directly related to high systemic inflammation (path coefficient = 0.49), whereas diarrhea, high calprotectin, and low SCFA production related to death indirectly via their more direct association with systemic inflammation. CONCLUSIONS: Diarrhea, high intestinal inflammation, low concentrations of fecal SCFAs, and high systemic inflammation are significantly related to mortality in SAM. However, these relations were not mediated by the presence of intestinal pathogens. These findings offer an important understanding of inflammatory changes in SAM, which may lead to improved therapies. This trial was registered at www.controlled-trials.com as ISRCTN13916953.


Subject(s)
Diarrhea/mortality , Intestines/microbiology , Intestines/parasitology , Severe Acute Malnutrition/mortality , Butyrates/analysis , Child, Preschool , Cohort Studies , Cytokines/analysis , Diarrhea/etiology , Fatty Acids, Volatile/analysis , Feces/chemistry , Feces/microbiology , Feces/parasitology , Feces/virology , Female , Humans , Infant , Inflammation , Intestines/virology , Leukocyte L1 Antigen Complex/analysis , Malawi , Male , Prevalence , Severe Acute Malnutrition/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...