Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Divers ; 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37369956

ABSTRACT

Diabetes mellitus is one of the top ten causes of death worldwide, accounting for 6.7 million deaths in 2021, and is one of the most rapidly growing global health emergencies of this century. Although several classes of therapeutic drugs have been invented and applied in clinical practice, diabetes continues to pose a serious and growing threat to public health and places a tremendous burden on those affected and their families. The strategy of reducing carbohydrate digestibility by inhibiting the activities of α-glucosidase and α-amylase is regarded as a promising preventative treatment for type 2 diabetes. In this study, we investigated the dual inhibitory effect against two polysaccharide hydrolytic enzymes of flavonoid derivatives from an in-house chemical database. By combining molecular docking and structure-activity relationship analysis, twelve compounds with docking energies less than or equal to - 8.0 kcal mol-1 and containing required structural features for dual inhibition of the two enzymes were identified and subjected to chemical synthesis and in vitro evaluation. The obtained results showed that five compounds exhibited dual inhibitory effects on the target enzymes with better IC50 values than the approved positive control acarbose. Molecular dynamics simulations were performed to elucidate the binding of these flavonoids to the enzymes. The predicted pharmacokinetic and toxicological properties suggest that these compounds are viable for further development as type 2 diabetes drugs.

2.
Molecules ; 25(20)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066044

ABSTRACT

Inhibition of human pancreatic lipase, a crucial enzyme in dietary fat digestion and absorption, is a potent therapeutic approach for obesity treatment. In this study, human pancreatic lipase inhibitory activity of aurone derivatives was explored by molecular modeling approaches. The target protein was human pancreatic lipase (PDB ID: 1LPB). The 3D structures of 82 published bioactive aurone derivatives were docked successfully into the protein catalytic active site, using AutoDock Vina 1.5.7.rc1. Of them, 62 compounds interacted with the key residues of catalytic trial Ser152-Asp176-His263. The top hit compound (A14), with a docking score of -10.6 kcal⋅mol-1, was subsequently submitted to molecular dynamics simulations, using GROMACS 2018.01. Molecular dynamics simulation results showed that A14 formed a stable complex with 1LPB protein via hydrogen bonds with important residues in regulating enzyme activity (Ser152 and Phe77). Compound A14 showed high potency for further studies, such as the synthesis, in vitro and in vivo tests for pancreatic lipase inhibitory activity.


Subject(s)
Benzofurans/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Lipase/antagonists & inhibitors , Lipase/chemistry , Benzofurans/pharmacology , Catalytic Domain , Humans , Hydrogen Bonding , Ligands , Lipase/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Orlistat/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...