Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(28): 71628-71636, 2023 Jun.
Article in English | MEDLINE | ID: mdl-34156624

ABSTRACT

Bi2S3, 5 ml EG-Bi2S3, and 10 ml EG-Bi2S3 were synthesized by employing solvothermal route. X-ray diffraction, UV-vis absorption, photoluminescence, Raman, scanning electron microscopic studies confirmed the structural, optical, morphological behaviors. The XRD pattern of Bi2S3, 5 ml EG-Bi2S3, and 10 ml EG-Bi2S3 was correlated well with JCPDS # 65-2435. The crystallite size was found to be 57, 49, and 40 nm. The photoluminescence spectra showed semiconducting property of prepared Bi2S3, 5 ml EG-Bi2S3, and 10 ml EG-Bi2S3. The absorption spectra of Bi2S3, 5 ml EG-Bi2S3, and 10 ml EG-Bi2S3 nanorods were well matched with the spectra of a previous report. The bandgap values of Bi2S3, 5 ml EG-Bi2S3, and 10 ml EG-Bi2S3 were calculated to be 1.56, 1.45, and 1.3 eV in reducing order. The morphology of Bi2S3, 5 ml EG-Bi2S3, and 10 ml EG-Bi2S3 samples showed the development of nanorods. The 10 ml EG-Bi2S3 sample showed better development of nanorods with the addition of ethylene glycol. The agglomeration was considerably reduced with the mixing of solvent. Bi2S3, 5 ml EG-Bi2S3, and 10 ml EG-Bi2S3 catalysts were added to the methylene blue dye solution and its photocatalytic properties were investigated by reducing toxic pollutants under light. The 10 ml EG-Bi2S3 sample with neutral pH and 0.1 g of catalyst was added and investigated which showed 86% of efficiency towards dye degradation. The narrow bandgap, defined morphology of 10 ml EG-Bi2S3, made a positive result towards efficient photocatalytic activity.


Subject(s)
Light , Nanotubes , Nanotubes/chemistry , Catalysis , Hydrogen-Ion Concentration , X-Ray Diffraction
2.
Environ Chem Lett ; 20(1): 901-927, 2022.
Article in English | MEDLINE | ID: mdl-34803553

ABSTRACT

The advent of microfluidic systems has led to significant developments in lab-on-a-chip devices integrating several functions onto a single platform. Over the years, these miniature devices have become a promising tool for faster analytical testing, displaying high precision and efficiency. Nonetheless, most microfluidic systems are not commercially available. Research is actually undergoing on the application of these devices in environmental, food, biomedical, and healthcare industries. The lab-on-a-chip industry is predicted to grow annually by 20%. Here, we review the use of lab-on-a-chip devices in the food sector. We present fabrication technologies and materials to developing lab-on-a-chip devices. We compare electrochemical, optical, colorimetric, chemiluminescence and biological methods for the detection of pathogens and microorganisms. We emphasize emulsion processing, food formulation, nutraceutical development due to their promising characteristics. Last, smart packaging technologies like radio frequency identification and indicators are highlighted because they allow better product identification and traceability.

3.
Environ Pollut ; 287: 117632, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34426388

ABSTRACT

For clearing pollutants and emerging contaminants like ciprofloxacin-500mg from wastewaters generated from pharmaceutical industries, soapnut seeds biochar was synthesized and used as an adsorbent for the effective removal process. Tubular furnace operated under nitrogen gas environment was used to synthesize biochar. The batch analysis were carried out successfully to study the removal mechanism and the removal efficiency of the chosen pollutant. The soapnut seeds biochar showed excellent adsorption of ciprofloxacin at pH 6 and temperature 303 K when the dosage was 0.07 g. The Langmuir removal capacity of 33.44 mg/g was received and the Freundlich model provided the best-fits. The ciprofloxacin-500mg adsorption process correlated well with the pseudo-second-order kinetics equation, and the intraparticle diffusion mechanism mainly controlled the process. The characterization of biochar concluded that O-H groups, CO groups, COO-groups and C-F groups, and π-π interactions, pore-filling effect, and cation exchange interactions played a role in the adsorption process. Therefore, the findings of the present work revealed that soapnut seeds biochar would be an excellent low-cost adsorbent for the removal of ciprofloxacin-500mg from wastewater.


Subject(s)
Soaps , Water Pollutants, Chemical , Adsorption , Charcoal , Kinetics , Nuts/chemistry , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...