Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
JAMA Oncol ; 7(12): 1772-1781, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34647981

ABSTRACT

IMPORTANCE: A total of 1% to 3% of patients treated with a poly(adenosine diphosphate-ribose) polymerase inhibitor for high-grade ovarian cancer (HGOC) develop therapy-related myeloid neoplasms (t-MNs), which are rare but often fatal conditions. Although the cause of these t-MNs is unknown, clonal hematopoiesis of indeterminate potential (CHIP) variants can increase the risk of primary myeloid malignant neoplasms and are more frequent among patients with solid tumors. OBJECTIVES: To examine whether preexisting CHIP variants are associated with the development of t-MNs after rucaparib treatment and how these CHIP variants are affected by treatment. DESIGN, SETTING, AND PARTICIPANTS: This retrospective genetic association study used peripheral blood cell (PBC) samples collected before rucaparib treatment from patients in the multicenter, single-arm ARIEL2 (Study of Rucaparib in Patients With Platinum-Sensitive, Relapsed, High-Grade Epithelial Ovarian, Fallopian Tube, or Primary Peritoneal Cancer) (n = 491; between October 30, 2013, and August 9, 2016) and the multicenter, placebo-controlled, double-blind ARIEL3 (Study of Rucaparib as Switch Maintenance Following Platinum-Based Chemotherapy in Patients With Platinum-Sensitive, High-Grade Serous or Endometrioid Epithelial Ovarian, Primary Peritoneal or Fallopian Tube Cancer) (n = 561; between April 7, 2014, and July 19, 2016), which tested rucaparib as HGOC therapy in the treatment and maintenance settings, respectively. The follow-up data cutoff date was September 1, 2019. Of 1052 patients in ARIEL2 and ARIEL3, PBC samples from 20 patients who developed t-MNs (cases) and 44 randomly selected patients who did not (controls) were analyzed for the presence of CHIP variants using targeted next-generation sequencing. Additional longitudinal analysis was performed on available ARIEL2 samples collected during treatment and at the end of treatment. MAIN OUTCOMES AND MEASURES: Enrichment analysis of preexisting variants in 10 predefined CHIP-associated genes in cases relative to controls; association with clinical correlates. RESULTS: Among 1052 patients (mean [SE] age, 61.7 [0.3] years) enrolled and dosed in ARIEL2 and ARIEL3, 22 (2.1%) developed t-MNs. The t-MNs were associated with longer overall exposure to prior platinum therapies (13.2 vs 9.0 months in ARIEL2, P = .04; 12.4 vs 9.6 months in ARIEL3, P = .003). The presence of homologous recombination repair gene variants in the tumor, either germline or somatic, was associated with increased prevalence of t-MNs (15 [4.1%] of 369 patients with HGOC associated with an HRR gene variant vs 7 [1.0%] of 683 patients with wild-type HGOC, P = .002). The prevalence of preexisting CHIP variants in TP53 but not other CHIP-associated genes at a variant allele frequency of 1% or greater was significantly higher in PBCs from cases vs controls (9 [45.0%] of 20 cases vs 6 [13.6%] of 44 controls, P = .009). TP53 CHIP was associated with longer prior exposure to platinum (mean 14.0 months of 15 TP53 CHIP cases vs 11.1 months of 49 non-TP53 CHIP cases; P = .02). Longitudinal analysis showed that preexisting TP53 CHIP variants expanded in patients who developed t-MNs. CONCLUSIONS AND RELEVANCE: The findings of this genetic association study suggest that preexisting TP53 CHIP variants may be associated with t-MNs after rucaparib treatment.


Subject(s)
Clonal Hematopoiesis , Ovarian Neoplasms , Female , Humans , Indoles/adverse effects , Middle Aged , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , Retrospective Studies , Tumor Suppressor Protein p53/genetics
2.
Nat Commun ; 12(1): 2487, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33941784

ABSTRACT

ARIEL2 (NCT01891344) is a single-arm, open-label phase 2 study of the PARP inhibitor (PARPi) rucaparib in relapsed high-grade ovarian carcinoma. In this post hoc exploratory biomarker analysis of pre- and post-platinum ARIEL2 samples, RAD51C and RAD51D mutations and high-level BRCA1 promoter methylation predict response to rucaparib, similar to BRCA1/BRCA2 mutations. BRCA1 methylation loss may be a major cross-resistance mechanism to platinum and PARPi. Genomic scars associated with homologous recombination deficiency are irreversible, persisting even as platinum resistance develops, and therefore are predictive of rucaparib response only in platinum-sensitive disease. The RAS, AKT, and cell cycle pathways may be additional modulators of PARPi sensitivity.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Ovarian Epithelial/drug therapy , Indoles/therapeutic use , Ovarian Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/adverse effects , BRCA1 Protein/genetics , BRCA2 Protein/genetics , DNA Methylation/genetics , DNA-Binding Proteins/genetics , Female , Humans , Indoles/adverse effects , Middle Aged , Neoplasm Recurrence, Local/drug therapy , Platinum/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , Promoter Regions, Genetic/genetics
3.
Cancer Discov ; 9(2): 210-219, 2019 02.
Article in English | MEDLINE | ID: mdl-30425037

ABSTRACT

A key resistance mechanism to platinum-based chemotherapies and PARP inhibitors in BRCA-mutant cancers is the acquisition of BRCA reversion mutations that restore protein function. To estimate the prevalence of BRCA reversion mutations in high-grade ovarian carcinoma (HGOC), we performed targeted next-generation sequencing of circulating cell-free DNA (cfDNA) extracted from pretreatment and postprogression plasma in patients with deleterious germline or somatic BRCA mutations treated with the PARP inhibitor rucaparib. BRCA reversion mutations were identified in pretreatment cfDNA from 18% (2/11) of platinum-refractory and 13% (5/38) of platinum-resistant cancers, compared with 2% (1/48) of platinum-sensitive cancers (P = 0.049). Patients without BRCA reversion mutations detected in pretreatment cfDNA had significantly longer rucaparib progression-free survival than those with reversion mutations (median, 9.0 vs. 1.8 months; HR, 0.12; P < 0.0001). To study acquired resistance, we sequenced 78 postprogression cfDNA, identifying eight additional patients with BRCA reversion mutations not found in pretreatment cfDNA. SIGNIFICANCE: BRCA reversion mutations are detected in cfDNA from platinum-resistant or platinum-refractory HGOC and are associated with decreased clinical benefit from rucaparib treatment. Sequencing of cfDNA can detect multiple BRCA reversion mutations, highlighting the ability to capture multiclonal heterogeneity.This article is highlighted in the In This Issue feature, p. 151.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Carcinoma, Ovarian Epithelial/pathology , Circulating Tumor DNA/genetics , Drug Resistance, Neoplasm/genetics , Indoles/therapeutic use , Mutation , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Circulating Tumor DNA/drug effects , Female , Follow-Up Studies , Humans , International Agencies , Male , Middle Aged , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Prognosis , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...