Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(19): 28706-28718, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558336

ABSTRACT

Developing adsorbent materials with high adsorptive dephosphorization (ADP) is significant for treating phosphate from aqueous solutions and eutrophic water. Herein, the MIL-101(Cr) framework was entrapped ionic liquid (IL) of 1-butyl-3-methylimidazoliumbromide ionic liquid ([C4mem]+[Br]-) using a ship-in-a-bottle approach to obtain novel adsorbents [C4mem]+[Br]-@MIL-101(Cr) contained varied IL contents, namely C4mem@MIL-101. The characterization results revealed that the formed [C4mem]+[Br]- molecules interacted with the MIL-101(Cr) frameworks, enhanced their stability, and offered additional adsorption sites. The batch adsorptions of phosphate showed that the optimized C4mem@MIL-101 adsorbent loaded with ~ 7% IL-based N content had the highest phosphate absorbing capacity of ~ 200 mg/g, outperforming the pristine MIL-101(Cr) and other adsorbents. The ADP efficiency was facilitated in the acidic media, where the phosphate ions of H2PO4- and HPO42- captured onto the C4mem@MIL-101 via several interactions, including electrostatic attraction, H-bonds, and chemical interactions. In the meantime, the coexisting anions diminished the phosphate adsorption because they competed with the pollutants at adsorption sites. Furthermore, phosphate treatment under the continuous fixed-bed conditions showed that 1 g of the polyvinyl alcohol (PVA)-mixed C4mem@MIL-101 pellets purified 25 l of water containing phosphate with a 1 mg/l concentration. The results suggest that the novel [C4mem]+[Br]-@MIL-101(Cr) structure had a high potential for treating phosphate in aqueous solutions.


Subject(s)
Ionic Liquids , Metal-Organic Frameworks , Phosphates , Water Pollutants, Chemical , Water Purification , Ionic Liquids/chemistry , Phosphates/chemistry , Adsorption , Metal-Organic Frameworks/chemistry , Water Purification/methods , Water Pollutants, Chemical/chemistry
2.
Chemosphere ; 341: 139996, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37648167

ABSTRACT

In this work, we developed a thin membrane of boehmite-polyvinyl alcohol composite (BOPOM) (diameter âˆ¼ 5 cm) grafted ZIF-67 combing sol-gel and in-situ growth methods. The fabricated materials were characterized using FT-IR, SEM, XRD, TGA, XPS, and N2 sorption techniques. Results indicate that ZIF-67 nanocrystals were well-grafted into the AlOOH-PVA matrix with reduced crystallite size. Furthermore, the decorated ZIF-67 offered additional porous structures and adsorption sites onto the membrane, enhancing their removal efficiency towards Cr6+ compared to the undecorated and pristine ZIF-67. At pH ∼5.5, the harvested ZIF-67/BOPOM exhibited the highest Cr6+ uptake capacity of ∼56.4 mg g-1. Kinetic studies showed that the chromium adsorption on the prepared materials obeyed the pseudo-second-order model, and the kinetic parameters followed the order ZIFF-67/BOPOM (0.020 mg g-1 min-1) > BOPOM (0.011 mg g-1 min-1) > ZIF-67 (0.006 mg g-1 min-1). Notably, the adsorption mechanism study revealed that adsorbed Cr6+ was reduced to Cr3+, and the reduction yield was boosted owing to grafting ZIF-67 into the BOPOM. In addition, the fabricated ZIF-67/BOPOM can simultaneously remove Cr6+ and methyl orange dye (MO) in the solution due to their synergetic effects on each other. Furthermore, the hybrid membrane ZIF-67/BOPOM showed a chromium removal efficiency of ∼78.2% after four successive adsorption-desorption cycles. This study indicates that grafting nanocrystals ZIF-67 onto the super-platform boehmite-PVA is a promising strategy to harvest an adsorbent with a high adsorption ability, cost-effectiveness, and reduced secondary pollution risks.


Subject(s)
Chromium , Water Pollutants, Chemical , Kinetics , Spectroscopy, Fourier Transform Infrared , Chromium/chemistry , Water , Adsorption , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
3.
Food Sci Nutr ; 11(7): 4030-4037, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37457188

ABSTRACT

Plastic food packaging is an essential element for customer convenience and the preservation of food quality. Nonetheless, heavy metals in the packaging materials, either intentionally or nonintentionally added, can be transferred to the food. Therefore, determining heavy metal contents in these packaging materials is essential. In this study, heavy metals, including Co, Ge, As, Cd, Sb, Pb, Al, and Zn from different intrinsic plastic food packaging materials were analyzed using the inductively coupled plasma-mass spectrometry (ICP-MS) method. Moreover, the migration of these elements into the environment was also investigated. This method is validated following the new technique's requirements, which include linearity range, accuracy, precision, the limit of detection (LOD), and the limit of quantitation (LOQ). The method has been suitably validated with the regression equation from the standards prepared in HNO3 1% v/v. The linear range was found to be ~1-20 ng mL-1 for Co, Ge, As, Cd, Sb, and Pb and 5-80 ng mL-1 for Al and Zn elements. The LODs are ~0.10, 0.25, 0.12, 0.13, 0.11, 0.12, 0.61, and 0.85 ng mL-1, and the LOQs are 0.33, 0.83, 0.40, 0.43, 0.36, 0.40, 2.01, and 2.81 ng mL-1 obtained for Co, Ge, As, Cd, Sb, Pb, Al, and Zn, respectively. In addition, the recovery percentages received ranged 85.4%-94.1% for Co, 82.6%-95.1% for Ge, 86.3%-97.9% for As, 87.3%-96.3% for Cd, 88.0%-104.4% for Sb, 96.3%-106.0% for Pb, 88.4%-104.0% for Al, and 95.1%-99.7% for Zn. Finally, the migration of these heavy metals from polypropylene (PP) and polystyrene (PS) into foodstuffs was also simulated according to EU legislation, showing that the most leached element was Zn, followed by Al and Pd, with the migration of ~8.38% and ~0.41%, and ~0.19%, respectively.

4.
RSC Adv ; 13(9): 5859-5868, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36816090

ABSTRACT

Developing low-cost and highly effective adsorbent materials to decolorate wastewater is still challenging in the industry. In this study, TiO2-modified Al2O3 microspheres with different TiO2 contents were produced by spray pyrolysis, which is rapid and easy to scale up. Results reveal that the modification of γ-Al2O3 with TiO2 reduced the crystallite size of Al2O3 and generated more active sites in the composite sample. The as-synthesized Al2O3-TiO2 microspheres were applied to remove anionic methyl orange (MO) and cationic rhodamine B (RB) dyes in an aqueous solution using batch and continuous flow column sorption processes. Results show that the Al2O3 microspheres modified with 15 wt% of TiO2 exhibited the maximum adsorbing capacity of ∼41.15 mg g-1 and ∼32.28 mg g-1 for MO and RB, respectively, exceeding the bare γ-Al2O3 and TiO2. The impact of environmental complexities on the material's reactivity for the organic pollutants was further delineated by adjusting the pH and adding coexisting ions. At pH ∼5.5, the TiO2/Al2O3 microspheres showed higher sorption selectivity towards MO. In the continuous flow column removal, the TiO2/Al2O3 microspheres achieved sorption capacities of ∼31 mg g-1 and ∼19 mg g-1 until the breakthrough point for MO and RB, respectively. The findings reveal that TiO2-modified Al2O3 microspheres were rapidly prepared by spray pyrolysis, and they effectively treated organic dyes in water in batch and continuous flow removal processes.

5.
Environ Sci Pollut Res Int ; 29(28): 42991-43003, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35092592

ABSTRACT

Mesoporous microspheres of Al2O3@TiO2 were effe ctively and rapidly prepared by the sol-spray pyrolysis (SP) method. Ultrasonic-induced droplets containing titania sol, boehmite sol, and citric acid (CA) were pyrolyzed to γ-Al2O3-incorporated anatase TiO2 microspheres. The SP-derived Al2O3@TiO2 microspheres exhibited higher porosity and lower bandgap energy than pure TiO2 and commercial P25. The TiO2 microspheres incorporated with 5 wt% amorphous γ-Al2O3 efficiently removed tetracycline (TC) after 60 min of pre-adsorption and 140 minutes of UV illumination (removal efficiency ~ 91%, surpassing those of pure TiO2 and commercial P25). Introducing amorphous γ-Al2O3 into the anatase TiO2 matrix created a synergetic effect that enhanced the accumulation of TC onto the catalyst surface; meanwhile, the formation of defective heterojunctions favored the separation and immigration of the photo-generated holes and electrons. In a reaction mechanism analysis, h+ and O2•‾ radicals were identified as the main instigators of TC photooxidation. Furthermore, the SP-derived Al2O3@TiO2 microspheres demonstrated good stability and renewability in durability tests. The study provides a simple and scalable method for manufacturing Al2O3-decorated TiO2 microspheres with improved adsorption and photocatalytic performance.


Subject(s)
Pyrolysis , Titanium , Catalysis , Microspheres
6.
Environ Sci Pollut Res Int ; 28(48): 68261-68275, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34268686

ABSTRACT

Recently, metal-organic framework (MOF)-based hybrid composites have attracted significant attention in photocatalytic applications. In this work, MgFe2O4@UiO-66(Zr) (MFeO@UiO) composites with varying compositions were successfully synthesized via facile in situ assemblies. Depositing the UiO-66(Zr) framework onto ferrite nanoparticles yielded a composite structure having a lower bandgap energy (2.28-2.60 eV) than that of the parent UiO-66(Zr) (~3.8 eV). Moreover, the MFeO@UiO composite exhibited magnetic separation property and improved porosity. The removal experiment for tetracycline (TC) in aqueous media revealed that the MFeO@UiO composite exhibited a high total TC removal efficiency of ca. ~94% within 45-min preadsorption and 120-min visible-light illumination, which is higher than that of pristine ferrite and UiO-66(Zr). The enhanced photodegradation efficiency of MFeO@UiO is attributed to efficient interfacial charge transfer at the heterojunction and the synergistic effect between the semiconductors. Radical scavenging experiments revealed that photogenerated holes (h+) and hydroxyl radicals (·OH) were the major reactive species involved in TC photodegradation. Moreover, the prepared MFeO@UiO nanocomposite showed good recyclability and renewability, making it a potential material for wastewater treatments.


Subject(s)
Light , Tetracycline , Adsorption , Catalysis , Metal-Organic Frameworks , Phthalic Acids
7.
J Biol Chem ; 294(34): 12638-12654, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31262726

ABSTRACT

Glioblastoma (GBM) is a brain tumor that remains largely incurable because of its highly-infiltrative properties. Nuclear factor I (NFI)-type transcription factors regulate genes associated with GBM cell migration and infiltration. We have previously shown that NFI activity depends on the NFI phosphorylation state and that calcineurin phosphatase dephosphorylates and activates NFI. Calcineurin is cleaved and activated by calpain proteases whose activity is, in turn, regulated by an endogenous inhibitor, calpastatin (CAST). The CAST gene is a target of NFI in GBM cells, with differentially phosphorylated NFIs regulating the levels of CAST transcript variants. Here, we uncovered an NFIB-calpain 1-positive feedback loop mediated through CAST and calcineurin. In NFI-hyperphosphorylated GBM cells, NFIB expression decreased the CAST-to-calpain 1 ratio in the cytoplasm. This reduced ratio increased autolysis and activity of cytoplasmic calpain 1. Conversely, in NFI-hypophosphorylated cells, NFIB expression induced differential subcellular compartmentalization of CAST and calpain 1, with CAST localizing primarily to the cytoplasm and calpain 1 to the nucleus. Overall, this altered compartmentalization increased nuclear calpain 1 activity. We also show that nuclear calpain 1, by cleaving and activating calcineurin, induces NFIB dephosphorylation. Of note, knockdown of calpain 1, NFIB, or both increased GBM cell migration and up-regulated the pro-migratory factors fatty acid-binding protein 7 (FABP7) and Ras homolog family member A (RHOA). In summary, our findings reveal bidirectional cross-talk between NFIB and calpain 1 in GBM cells. A physiological consequence of this positive feedback loop appears to be decreased GBM cell migration.


Subject(s)
Calpain/metabolism , Cell Movement , Glioblastoma/metabolism , Glioblastoma/pathology , NFI Transcription Factors/metabolism , Cell Line, Tumor , Humans
8.
J Pathol ; 247(2): 186-198, 2019 02.
Article in English | MEDLINE | ID: mdl-30350349

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited treatment options and poor prognosis. There is an urgent need to identify and understand the key factors and signalling pathways driving TNBC tumour progression, relapse, and treatment resistance. In this study, we report that gene copy numbers and expression levels of nuclear factor IB (NFIB), a recently identified oncogene in small cell lung cancer, are preferentially increased in TNBC compared to other breast cancer subtypes. Furthermore, increased levels of NFIB are significantly associated with high tumour grade, poor prognosis, and reduced chemotherapy response. Concurrent TP53 mutations and NFIB overexpression (z-scores > 0) were observed in 77.9% of TNBCs, in contrast to 28.5% in non-TNBCs. Depletion of NFIB in TP53-mutated TNBC cell lines promotes cell death, cell cycle arrest, and enhances sensitivity to docetaxel, a first-line chemotherapeutic drug in breast cancer treatment. Importantly, these alterations in growth properties were accompanied by induction of CDKN1A, the gene encoding p21, a downstream effector of p53. We show that NFIB directly interacts with the CDKN1A promoter in TNBC cells. Furthermore, knockdown of combined p21 and NFIB reverses the docetaxel-induced cell growth inhibition observed upon NFIB knockdown, indicating that NFIB's effect on chemotherapeutic drug response is mediated through p21. Our results indicate that NFIB is an important TNBC factor that drives tumour cell growth and drug resistance, leading to poor clinical outcomes. Thus, targeting NFIB in TP53-mutated TNBC may reverse oncogenic properties associated with mutant p53 by restoring p21 activity. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/metabolism , Mutation , NFI Transcription Factors/metabolism , Transcription, Genetic , Triple Negative Breast Neoplasms/metabolism , Tumor Suppressor Protein p53/genetics , Antineoplastic Agents/pharmacology , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Cell Survival , Cyclin-Dependent Kinase Inhibitor p21/genetics , Docetaxel/pharmacology , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Humans , NFI Transcription Factors/genetics , Signal Transduction , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
9.
J Biol Chem ; 294(4): 1173-1188, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30504225

ABSTRACT

Malignant glioma (MG) is the most lethal primary brain tumor. In addition to having inherent resistance to radiation treatment and chemotherapy, MG cells are highly infiltrative, rendering focal therapies ineffective. Genes involved in MG cell migration and glial cell differentiation are up-regulated by hypophosphorylated nuclear factor I (NFI), which is dephosphorylated by the phosphatase calcineurin in MG cells. Calcineurin is cleaved and thereby activated by calpain proteases, which are, in turn, inhibited by calpastatin (CAST). Here, we show that the CAST gene is a target of NFI and has NFI-binding sites in its intron 3 region. We also found that NFI-mediated regulation of CAST depends on NFI's phosphorylation state. We noted that occupation of CAST intron 3 by hypophosphorylated NFI results in increased activation of an alternative promoter. This activation resulted in higher levels of CAST transcript variants, leading to increased levels of CAST protein that lacks the N-terminal XL domain. CAST was primarily present in the cytoplasm of NFI-hypophosphorylated MG cells, with a predominantly perinuclear immunostaining pattern. NFI knockdown in NFI-hypophosphorylated MG cells increased CAST levels at the plasma membrane. These results suggest that NFI plays an integral role in the regulation of CAST variants and CAST subcellular distribution. Along with the previous findings indicating that NFI activity is regulated by calcineurin, these results provide a foundation for further investigations into the possibility of regulatory cross-talk between NFI and the CAST/calpain/calcineurin signaling pathway in MG cells.


Subject(s)
Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Glioma/metabolism , Mutation , Neurofibromin 1/metabolism , Subcellular Fractions/metabolism , Binding Sites , Cell Movement , Glioma/pathology , Humans , Neurofibromin 1/genetics , Phosphorylation , Promoter Regions, Genetic , Tumor Cells, Cultured
10.
Plant Biotechnol J ; 17(6): 1048-1057, 2019 06.
Article in English | MEDLINE | ID: mdl-30515982

ABSTRACT

With the exponential growth of the human population and industrial developments, research on renewable energy resources is required to alleviate environmental and economic impacts caused by the consumption of fossil fuels. In this study, we present a synthetic biological application of a wood forming tissue-specific bicistronic gene expression system to improve both the quantity and quality of woody biomass to minimize undesirable growth penalties. Our transgenic poplars, designed to express both PdGA20ox1 (a GA20-oxidase from Pinus densiflora producing bioactive gibberellin, GA) and PtrMYB221 (a MYB transcription factor negatively regulating lignin biosynthesis) under the developing xylem (DX) tissue-specific promoter (i.e., DX15::PdGA20ox1-2A-PtrMYB221 poplar), resulted in a 2-fold increase in biomass quantity compared to wild-type (WT), without undesirable growth defects. A similar phenotype was observed in transgenic Arabidopsis plants harboring the same gene constructs. These phenotypic consequences were further verified in the field experiments. Importantly, our transgenic poplars exhibited an improved quality of biomass with reduced lignin content (~16.0 wt%) but increased holocellulose content (~6.6 wt%). Furthermore, the saccharification efficiency of our transgenic poplar increased significantly by up to 8%. Our results demonstrate that the controlled production of both GA and a secondary wall modifying regulator in the same spatio-temporal manner can be utilized as an efficient biotechnological tool for producing the desired multi-purpose woody biomass.


Subject(s)
Biomass , Gene Expression Regulation, Plant , Genes, Plant , Populus , Wood , Biotechnology , Genes, Plant/genetics , Lignin/genetics , Populus/genetics , Populus/growth & development , Wood/genetics , Xylem/genetics
11.
Bioresour Technol ; 241: 610-619, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28605725

ABSTRACT

In this work, the hydrothermal liquefaction (HTL) of microalgal Tetraselmis sp. was conducted at various reaction temperatures (250-350°C) and reaction times (10-60min). A general reaction network and a quantitative kinetic model were proposed for the HTL of microalgae. In this reaction network, the primary decomposition of lipids, proteins, and carbohydrates generated heavy oil (HO), light oil (LO), and aqueous-phase (AP) products. Then, reversible interconversions and further decomposition of these product fractions to produce gas product were followed. The model accurately captures the trends observed in the experimental data. Analyses of the kinetic parameters (reaction rate constants and activation energies) suggested the dominant reaction pathways as well as the contribution of the biochemical compositions to the bio-oil yield. Finally, the kinetic parameters calculated from the model were utilized to explore the parameter space in order to predict the liquefaction product yields depending on the reaction time and temperature.


Subject(s)
Biotechnology , Chlorophyta , Microalgae , Kinetics , Temperature
12.
BMC Cancer ; 14: 37, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24447372

ABSTRACT

BACKGROUND: Chemoresistance is a major factor involved in a poor response and reduced overall survival in patients with advanced breast cancer. Although extensive studies have been carried out to understand the mechanisms of chemoresistance, many questions remain unanswered. METHODS: In this research, we used two isogenic MCF-7 breast cancer cell lines selected for resistance to doxorubicin (MCF-7DOX) or docetaxel (MCF-7TXT) and the wild type parental cell line (MCF-7CC) to study mechanisms underlying acquired resistance to taxanes in MCF-7TXT cells. Cytotoxicity assay, immunoblotting, indirect immunofluorescence and live imaging were used to study the drug resistance, the expression levels of drug transporters and various tubulin isoforms, apoptosis, microtubule formation, and microtubule dynamics. RESULTS: MCF-7TXT cells were cross resistant to paclitaxel, but not to doxorubicin. MCF-7DOX cells were not cross-resistant to taxanes. We also showed that multiple mechanisms are involved in the resistance to taxanes in MCF-7TXT cells. Firstly, MCF-7TXT cells express higher level of ABCB1. Secondly, the microtubule dynamics of MCF-7TXT cells are weak and insensitive to the docetaxel treatment, which may partially explain why docetaxel is less effective in inducing M-phase arrest and apoptosis in MCF-7TXT cells in comparison with MCF-7CC cells. Moreover, MCF-7TXT cells express relatively higher levels of ß2- and ß4-tubulin and relatively lower levels of ß3-tubulin than both MCF-7CC and MCF-7DOX cells. The subcellular localization of various ß-tubulin isoforms in MCF-7TXT cells is also different from that in MCF-7CC and MCF-7DOX cells. CONCLUSION: Multiple mechanisms are involved in the resistance to taxanes in MCF-7TXT cells. The high expression level of ABCB1, the specific composition and localization of ß-tubulin isoforms, the weak microtubule dynamics and its insensitivity to docetaxel may all contribute to the acquired resistance of MCF-7TXT cells to taxanes.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/metabolism , Drug Resistance, Neoplasm , Taxoids/pharmacology , Tubulin Modulators/pharmacology , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Apoptosis/drug effects , Breast Neoplasms/pathology , Docetaxel , Dose-Response Relationship, Drug , Doxorubicin/pharmacology , Female , Humans , M Phase Cell Cycle Checkpoints/drug effects , MCF-7 Cells , Microtubules/drug effects , Microtubules/metabolism , Paclitaxel/pharmacology , Protein Isoforms , Time Factors , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...