Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mycotoxin Res ; 37(1): 63-78, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33068264

ABSTRACT

Fungi of Aspergillus and Penicillium genus can infect peas (Pisum sativum), leading to a contamination with the nephrotoxic and carcinogenic ochratoxin A (OTA). Under unfavourable conditions, a fungus primarily found on lupines, Diapothe toxica, may also grow on peas and produce the hepatotoxic phomopsin A (PHOA). To study the effect of processing on OTA and PHOA content, two model products-wheat/rye-mixed bread with pea flour addition and pea pasta-were manufactured at small-business scale from artificially contaminated pea flour. The decrease of OTA and PHOA contents were monitored along the production process as indicators for toxin transformation. Pea bread dough was subjected to proofing for 30-40 min at 32 °C and baked at 250 °C to 230 °C for 40 min. OTA content (LODs < 0.1 µg/kg) showed a reduction in the bread crust (initially 17.0 µg/kg) to 88% and no reduction in the crumb (110%). For PHOA (LODs < 3.6 µg/kg), a decrease to approximately 21% occurred in the bread crust (initially 12.5 µg/kg), whilst for crumb, a less intense decrease to 91% was found. Pea pasta prepared with two toxin levels was extruded at room temperature, dried and cooked for 8 min in boiling water. In pea pasta, OTA was reduced from 29.8 to 13.9 µg/kg by 22% each after cooking, whilst 15% and 10% of the initial toxin amounts were found in the cooking water, respectively. For PHOA, 60% and 78% of initially 14.3 µg/kg and 7.21 µg/kg remained in the cooked pasta. As only the decrease of the initial content was measured and no specific degradation products could be detected, further research is needed to characterise potential transformation products. Heat treatment reduces the initial PHOA content stronger than the OTA content during pasta cooking and bread making. However, significant amounts of both toxins would remain in the final products.


Subject(s)
Flour/analysis , Food Handling , Mycotoxins/analysis , Ochratoxins/analysis , Pisum sativum/microbiology , Bread/analysis , Fungi/classification , Fungi/metabolism , Hot Temperature
2.
Foods ; 9(12)2020 Dec 19.
Article in English | MEDLINE | ID: mdl-33352657

ABSTRACT

For decades, the evaluation of rye milling products have been aimed at detecting raw material defects that are linked to excessive enzyme activity. Those defects were indirectly characterized by the rheological methods of the dough or the final products. However, such methods do not sufficiently reflect the baking properties of all rye flours present on the market. A further problem is the continuing climate change, which affects compound composition in rye. So far, these bread defects can only be corrected by process engineering (e.g., extended dough resting). Therefore, it is necessary to characterize the main determinants of the quality defects prior to the baking process in order to predict baking quality and not waste raw material, energy, and time. In this study, it was found that the water accessibility of starch for gelatinization and its partial inhibition by certain components play a major role in baking quality. Specifically, high amounts of insoluble nonstarch-polysaccharides (NSPSs) and a hindered denaturation of proteins seem to be an indication and reason for poor baking quality. However, traditional quantitative analysis of the ingredients and properties of the rye milling products (e.g., falling number, protein content, amylographic data) does not allow any reliable conclusions about rye flour suitability for use as bread rye. It can be concluded that more complex compositional aspects (e.g., complexation of compounds) need to be characterized for future quality control of rye.

3.
Foods ; 8(10)2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31547068

ABSTRACT

Young kale and pea leaves are rich in secondary plant metabolites (SPMs) whose profile can be affected by ultraviolet B (UVB) radiation. Carotenoids and flavonoids in kale and pea exposed to narrow-banded UVB, produced by innovative light-emitting diodes (LEDs), and subsequently used for breadmaking were investigated for the first time, thus combining two important strategies to increase the SPMs intake. Breads were also fortified with protein-rich lentil flour. Antioxidant activity in the 'vegetable breads' indicated health-promoting effects. Lentil flour increased the antioxidant activity in all of the 'vegetable breads'. While carotenoids and chlorophylls showed a minor response to UVB treatment, kaempferol glycosides decreased in favor of increasing quercetin glycosides, especially in kale. Additionally, breadmaking caused major decreases in carotenoids and a conversion of chlorophyll to bioactive degradation products. In 'kale breads' and 'pea breads', 20% and 84% of flavonoid glycosides were recovered. Thus, kale and pea leaves seem to be suitable natural ingredients for producing innovative Functional Foods.

4.
Food Chem ; 295: 412-422, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31174776

ABSTRACT

Consumption of Brassica vegetables is linked to health benefits, as they contain high concentrations of the following secondary plant metabolites (SPMs): glucosinolate breakdown products, carotenoids, chlorophylls, and phenolic compounds. Especially Brassica vegetables are consumed as microgreens (developed cotyledons). It was investigated how different ontogenetic stages (microgreens or leaves) of pak choi (Brassica rapa subsp. chinensis) and kale (Brassica oleracea var. sabellica) differ in their SPM concentration. The impact of breadmaking on SPMs in microgreens (7 days) and leaves (14 days) in pak choi and kale as a supplement in mixed wheat bread was assessed. In leaves, carotenoids, chlorophylls, and phenolic compounds were higher compared to those of microgreens. Breadmaking caused a decrease of SPMs. Chlorophyll degradation was observed, leading to pheophytin and pyropheophytin formation. In kale, sinapoylgentiobiose, a hydroxycinnamic acid derivative, concentration increased. Thus, leaves of Brassica species are suitable as natural ingredients for enhancing bioactive SPM concentrations in bread.


Subject(s)
Brassica/metabolism , Bread , Food, Fortified , Triticum , Brassica rapa/chemistry , Brassica rapa/metabolism , Carotenoids/analysis , Carotenoids/metabolism , Chlorophyll/analysis , Chlorophyll/metabolism , Food, Fortified/analysis , Nitriles , Phenols/analysis , Plant Leaves/chemistry , Plant Leaves/metabolism , Secondary Metabolism
5.
Front Chem ; 6: 322, 2018.
Article in English | MEDLINE | ID: mdl-30167432

ABSTRACT

Flavonoids, carotenoids, and chlorophylls were characterized in microgreens and leaves of pea (Pisum sativum) and lupin (Lupinus angustifolius) as these metabolites change during ontogeny. All metabolites were higher in the leaves for both species. Acylated quercetin and kaempferol sophorotrioses were predominant in pea. Genistein and malonylated chrysoeriol were predominant in lupin. Further, the impact of breadmaking on these metabolites using pea and lupin material of two ontogenetic stages as an added ingredient in wheat-based bread was assessed. In "pea microgreen bread" no decrease of quercetin was found with regard to the non-processed plant material. However kaempferol glycosides showed slight decreases induced by the breadmaking process in "pea microgreen bread" and "pea leaf bread." In "lupin microgreen bread" no decrease of genistein compared to the non-processed plant material was found. Chrysoeriol glycosides showed slight decreases induced by the breadmaking process in "lupin microgreen bread" and "lupin leaf bread." In all breads, carotenoids and chlorophylls were depleted however pheophytin formation was caused. Thus, pea and lupin microgreens and leaves are suitable, natural ingredients for enhancing health-promoting secondary plant metabolites in bread and may even be used to tailor bread for specific consumer health needs.

6.
Neurobiol Dis ; 16(2): 440-53, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15193300

ABSTRACT

The developing rodent brain is vulnerable to pharmacological blockade of N-methyl-d-aspartate (NMDA) receptors which can lead to severe and disseminated apoptotic neurodegeneration. Here, we show that systemic administration of the NMDA receptor antagonist MK801 to 7-day-old rats leads to impaired activity of extracellular signal-regulated kinase 1/2 (ERK1/2) and reduces levels of phosphorylated cAMP-responsive element binding protein (CREB) in brain regions which display severe apoptotic neurodegeneration. Impaired ERK1/2 and CREB activity were temporally paralleled by sustained depletion of neurotrophin expression, particularly brain-derived neurotrophic factor (BDNF). BDNF supplementation fully prevented MK801-induced neurotoxicity in immature neuronal cultures and transgenic constitutive activation of Ras was associated with marked protection against MK801-induced apoptotic neuronal death. These data indicate that uncoupling of NMDA receptors from the ERK1/2-CREB signaling pathway in vivo results in massive apoptotic deletion of neurons in the developing rodent brain.


Subject(s)
Apoptosis/physiology , Gyrus Cinguli/growth & development , Gyrus Cinguli/pathology , Nerve Degeneration/pathology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Age Factors , Animals , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/metabolism , Dizocilpine Maleate/pharmacology , Down-Regulation/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Gene Expression/drug effects , Gyrus Cinguli/drug effects , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3 , Mitogen-Activated Protein Kinases/metabolism , Nerve Degeneration/chemically induced , Nerve Growth Factors/genetics , Neurons/cytology , Neurons/drug effects , Proto-Oncogene Proteins c-bcl-2/genetics , RNA, Messenger/analysis , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism , Transcription, Genetic/drug effects , ras Proteins/genetics , ras Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...