Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 7(7): 4454-4470, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38857443

ABSTRACT

Liposomes as drug-delivery systems have been researched and applied in multiple scientific reports and introduced as patented products with interesting therapeutic properties. Despite various advantages, this drug carrier faces major difficulties in its innate stability, cancer cell specificity, and control over the release of hydrophobic drugs, particularly quercetin, a naturally derived drug that carries many desirable characteristics for anticancer treatment. To improve the effectiveness of liposomes to deliver quercetin by tackling and mitigating the mentioned hurdles, we developed a strategy to establish the ability to passively target cancerous cells, as well as to increase the bioavailability of loaded drugs by incorporating poly(ethylene glycol), gelatin, and folic acid moieties to modify the liposomal system's surface. This research developed a chemically synthesized gelatin, poly(ethylene glycol), and folic acid as a single polymer to coat drug-loaded liposome systems. Liposomes were coated with gelatin-poly(ethylene glycol)-folic acid by electrostatic interaction, characterized by their size, morphology, ζ potential, drug loading efficiency, infrared structures, differential scanning calorimetry spectra, and drug-releasing profiles, and then evaluated for their cytotoxicity to MCF-7 breast cancer cells, as well as cellular uptake, analyzed by confocal imaging to further elaborate on the in vitro behavior of the coated liposome. The results indicated an unusual change in size with increased coating materials, followed by increased colloidal stability, ζ potential, and improved cytotoxicity to cancer cells, as shown by the cellular viability test with MCF-7. Cellular uptake also confirmed these results, providing data for the effects of biopolymer coating, while confirming that folic acid can increase the uptake of liposome by cancer cells. In consideration of such results, the modified gelatin-poly(ethylene glycol)-folic acid-coated liposome can be a potential system in delivering the assigned anticancer compound. This modified biopolymer showed excellent properties as a coating material and should be considered for further practical applications in the future.


Subject(s)
Antineoplastic Agents , Cell Survival , Drug Screening Assays, Antitumor , Folic Acid , Gelatin , Liposomes , Materials Testing , Particle Size , Polyethylene Glycols , Quercetin , Humans , Liposomes/chemistry , Polyethylene Glycols/chemistry , Gelatin/chemistry , Folic Acid/chemistry , Folic Acid/analogs & derivatives , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Quercetin/chemistry , Quercetin/pharmacology , Quercetin/administration & dosage , Cell Survival/drug effects , MCF-7 Cells , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Cell Proliferation/drug effects , Molecular Structure
2.
Article in English | MEDLINE | ID: mdl-34765008

ABSTRACT

Recently, plant-derived anti-inflammatory products have received an increasing attention from researchers due to their excellent in vivo activity with limited side effects. Therefore, the extraction of natural active compounds from the plant with high purity for use in anti-inflammatory formulations is required. In this study, oily Capsicum oleoresin (OCO) was extracted from Capsicum frutescens L. in ethanol by the ultrasound-assisted extraction technique, followed by a centrifugation step for a high purity OCO extract, which can be applied to develop anti-inflammatory formulations. The impact of various conditions (ethanol concentration, sonicating temperature, extraction time, solvent-to-sample ratio, and extraction repetition) on the efficiency of the extraction process was investigated. The results showed that the optimized conditions for the high yield of OCO were 95% ethanol, 50-60°C, 60 minutes, solvent-to-sample ratio of 5 : 1 ml/g, and one extraction repetition, followed by centrifuging at 5000 rpm in 2 hours. Then, the purity and in vivo anti-inflammatory activities of the obtained OCO was then determined by using the HPLC method and carrageenan-induced mice paw edema model, respectively. The purity of OCO was determined as 3.408 mg capsaicin per gram of Capsicum powder; meanwhile, its anti-inflammatory effect value was approximate to that of the commercial drug diclofenac after 48 hours of treatment. The high purity OCO prepared by this low-cost and ecofriendly extraction process would be a promising material for anti-inflammatory formulations.

3.
Polymers (Basel) ; 11(1)2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30960161

ABSTRACT

In this study, chitosan nanoparticles were used as a carrier for Protocatechuic acid (PCA) to resist Pyricularia oryzae against rice blast. The final compound was characterized using zeta potentials for its surface electricity, Fourier transform infrared (FT-IR) analysis and transmission electron microscopy (TEM) were conducted for functional groups and for particle sizes and shape, respectively. The zeta potential results showed that loading PCA causes chitosan nanoparticle (CSNP) to decrease in surface electrons. The TEM images revealed that the particle size of chitosan (CS), although increasing in size when carrying PCA molecules, showed sufficient size for reasonable penetration into fungal cells. The FT-IR analysis showed that all functional group in CSNP carried PCA matched with previous studies. The antifungal test showed that diameters of inhibition zone of CS increases significantly after loading PCA, exhibiting the strongest antimicrobial effect on the Pyricularia oryzae fungus compared with weaker effects exhibited by CSNP alone or PCA. Our results suggested that CSNP loaded with PCA could be a potential compound for eradication of Pyricularia oryzae and that further testing on in vitro rice plants is recommended to reaffirm this possibility.

SELECTION OF CITATIONS
SEARCH DETAIL
...