Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 44(1): 61-73, Jan.-Feb. 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1360177

ABSTRACT

Rapid antidepressant effects associated with ketamine have shifted the landscape for the development of therapeutics to treat major depressive disorder (MDD) from a monoaminergic to glutamatergic model. Treatment with ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, may be effective, but has many non-glutamatergic targets, and clinical and logistical problems are potential challenges. These factors underscore the importance of manipulations of binding mechanics to produce antidepressant effects without concomitant clinical side effects. This will require identification of efficient biomarkers to monitor target engagement. The mismatch negativity (MMN) is a widely used electrophysiological signature linked to the activity of NMDA receptors (NMDAR) in humans and animals and validated in pre-clinical and clinical studies of ketamine. In this review, we explore the flexibility of the MMN and its capabilities for reliable use in drug development for NMDAR antagonists in MDD. We supplement this with findings from our own research with three distinct NMDAR antagonists. The research described illustrates that there are important distinctions between the mechanisms of NMDAR antagonism, which are further crystallized when considering the paradigm used to study the MMN. We conclude that the lack of standardized methodology currently prevents MMN from being ready for common use in drug discovery. Clinical trial registration: This manuscript describes data collected from the following National Institutes of Health (NIH) and Veterans Affairs (VA) studies: AV-101, NCT03583554; lanicemine, NCT03166501; ketamine, NCT02556606.

2.
Braz J Psychiatry ; 44(1): 61-73, 2022.
Article in English | MEDLINE | ID: mdl-33825765

ABSTRACT

CLINICAL TRIAL REGISTRATION: Rapid antidepressant effects associated with ketamine have shifted the landscape for the development of therapeutics to treat major depressive disorder (MDD) from a monoaminergic to glutamatergic model. Treatment with ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, may be effective, but has many non-glutamatergic targets, and clinical and logistical problems are potential challenges. These factors underscore the importance of manipulations of binding mechanics to produce antidepressant effects without concomitant clinical side effects. This will require identification of efficient biomarkers to monitor target engagement. The mismatch negativity (MMN) is a widely used electrophysiological signature linked to the activity of NMDA receptors (NMDAR) in humans and animals and validated in pre-clinical and clinical studies of ketamine. In this review, we explore the flexibility of the MMN and its capabilities for reliable use in drug development for NMDAR antagonists in MDD. We supplement this with findings from our own research with three distinct NMDAR antagonists. The research described illustrates that there are important distinctions between the mechanisms of NMDAR antagonism, which are further crystallized when considering the paradigm used to study the MMN. We conclude that the lack of standardized methodology currently prevents MMN from being ready for common use in drug discovery. This manuscript describes data collected from the following National Institutes of Health (NIH) and Veterans Affairs (VA) studies: AV-101, NCT03583554; lanicemine, NCT03166501; ketamine, NCT02556606.


Subject(s)
Depressive Disorder, Major , Ketamine , Animals , Depression , Depressive Disorder, Major/drug therapy , Drug Development , Humans , Receptors, N-Methyl-D-Aspartate
3.
Depress Anxiety ; 38(11): 1108-1119, 2021 11.
Article in English | MEDLINE | ID: mdl-34254405

ABSTRACT

BACKGROUND: Posttraumatic stress disorder (PTSD) is associated with hyperarousal and stress reactivity, features consistent with behavioral sensitization. In this Phase 1b, parallel-arm, randomized, double-blind, placebo-controlled trial, we tested whether the selective low-trapping N-methyl-D-aspartate receptor (NMDAR) antagonist [Lanicemine (BHV-5500)] blocks expression of behavioral sensitization. METHODS: Twenty-four participants with elevated anxiety potentiated startle (APS) and moderate-to-severe PTSD symptoms received three infusions of lanicemine 1.0 mg/ml (100 mg) or matching placebo (0.9% saline) (1:1 ratio), over a 5-day period. The primary outcome was change in APS from baseline to end of third infusion. We also examined changes in EEG gamma-band oscillatory activity as measures of NMDAR target engagement and explored Clinician-Administered PTSD Scale (CAPS-5) hyperarousal scores. RESULTS: Lanicemine was safe and well-tolerated with no serious adverse events. Using Bayesian statistical inference, the posterior probability that lanicemine outperformed placebo on APS T-score after three infusions was 38%. However, after the first infusion, there was a 90% chance that lanicemine outperformed placebo in attenuating APS T-score by a standardized effect size more than 0.4. CONCLUSION: We demonstrated successful occupancy of lanicemine on NMDAR using gamma-band EEG and effects on hyperarousal symptoms (Cohen's d = 0.75). While lanicemine strongly attenuated APS following a single infusion, differential changes from placebo after three infusions was likely obscured by habituation effects. To our knowledge, this is the first use of APS in the context of an experimental medicine trial of a NMDAR antagonist in PTSD. These findings support selective NMDAR antagonism as a viable pharmacological strategy for salient aspects of PTSD.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Stress Disorders, Post-Traumatic , Bayes Theorem , Double-Blind Method , Humans , Phenethylamines , Pyridines , Stress Disorders, Post-Traumatic/diagnosis , Stress Disorders, Post-Traumatic/drug therapy , Treatment Outcome
4.
Am J Psychiatry ; 178(5): 437-446, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33653118

ABSTRACT

OBJECTIVE: Preclinical studies point to the KCNQ2/3 potassium channel as a novel target for the treatment of depression and anhedonia, a reduced ability to experience pleasure. The authors conducted the first randomized placebo-controlled trial testing the effect of the KCNQ2/3 positive modulator ezogabine on reward circuit activity and clinical outcomes in patients with depression. METHODS: Depressed individuals (N=45) with elevated levels of anhedonia were assigned to a 5-week treatment period with ezogabine (900 mg/day; N=21) or placebo (N=24). Participants underwent functional MRI during a reward flanker task at baseline and following treatment. Clinical measures of depression and anhedonia were collected at weekly visits. The primary endpoint was the change from baseline to week 5 in ventral striatum activation during reward anticipation. Secondary endpoints included depression and anhedonia severity as measured using the Montgomery-Åsberg Depression Rating Scale (MADRS) and the Snaith-Hamilton Pleasure Scale (SHAPS), respectively. RESULTS: The study did not meet its primary neuroimaging endpoint. Participants in the ezogabine group showed a numerical increase in ventral striatum response to reward anticipation following treatment compared with participants in the placebo group from baseline to week 5. Compared with placebo, ezogabine was associated with a significantly larger improvement in MADRS and SHAPS scores and other clinical endpoints. Ezogabine was well tolerated, and no serious adverse events occurred. CONCLUSIONS: The study did not meet its primary neuroimaging endpoint, although the effect of treatment was significant on several secondary clinical endpoints. In aggregate, the findings may suggest that future studies of the KCNQ2/3 channel as a novel treatment target for depression and anhedonia are warranted.


Subject(s)
Anhedonia , Carbamates/therapeutic use , Depressive Disorder, Major/drug therapy , KCNQ2 Potassium Channel , KCNQ3 Potassium Channel , Membrane Transport Modulators/therapeutic use , Phenylenediamines/therapeutic use , Reward , Ventral Striatum/diagnostic imaging , Adult , Depressive Disorder/diagnostic imaging , Depressive Disorder/drug therapy , Depressive Disorder/physiopathology , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/physiopathology , Double-Blind Method , Female , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Ventral Striatum/physiopathology
5.
Neuropsychopharmacology ; 46(4): 820-827, 2021 03.
Article in English | MEDLINE | ID: mdl-33318635

ABSTRACT

The kynurenine pathway (KP) is a strategic metabolic system that combines regulation of neuronal excitability via glutamate receptor function and neuroinflammation via other KP metabolites. This pathway has great promise in treatment of depression and suicidality. The KP modulator AV-101 (4-chlorokynurenine, 4-Cl-KYN), an oral prodrug of 7-chlorokynurenic acid (7-Cl-KYNA), an N-methyl-D-aspartate receptor (NMDAR) glycine site antagonist, and of 4-chloro-3-hydroxyanthranilic acid (4-Cl-3-HAA), a suppressor of NMDAR agonist quinolinic acid (QUIN), is a promising potential antidepressant that targets glutamate functioning via the KP. However, a recent placebo-controlled clinical trial of AV-101 in depression found negative results. This raises the question of whether AV-101 can penetrate the brain and engage the NMDAR and KP effectively. To address this problem, ten healthy US military veterans (mean age = 32.6 years ± 6.11; 1 female) completed a phase-1 randomized, double-blind, placebo-controlled, crossover study to examine dose-related effects of AV-101 (720 and 1440 mg) on NMDAR engagement measured by γ-frequency band auditory steady-state response (40 Hz ASSR) and resting EEG. Linear mixed models revealed that 1440 mg AV-101, but not 720 mg, increased 40 Hz ASSR and 40 Hz ASSR γ-inter-trial phase coherence relative to placebo. AV-101 also increased 4-Cl-KYN, 7-Cl-KYNA, 4-Cl-3-HAA, 3-HAA, and KYNA in a dose-dependent manner, without affecting KYN and QUIN. AV-101 was safe and well tolerated. These results corroborate brain target engagement of 1440 mg AV-101 in humans, consistent with blockade of interneuronal NMDAR blockade. Future studies should test higher doses of AV-101 in depression. Suicidal behavior, which has been associated with high QUIN and low KYNA, is also a potential target for AV-101.


Subject(s)
Neuroprotective Agents , Veterans , Adult , Cross-Over Studies , Female , Humans , Kynurenic Acid , Kynurenine , Quinolinic Acid , Receptors, N-Methyl-D-Aspartate
6.
Front Psychiatry ; 10: 846, 2019.
Article in English | MEDLINE | ID: mdl-31920733

ABSTRACT

Background: Individuals with post-traumatic stress disorder (PTSD) have a heightened sensitivity to subsequent stressors, addictive drugs, and symptom recurrence, a form of behavioral sensitization. N-methyl-D-aspartate receptors (NMDARs) are involved in the establishment and activation of sensitized behavior. Objective: We describe a protocol of a randomized placebo-controlled Phase 1b proof-of-mechanism trial to examine target engagement, safety, tolerability, and possible efficacy of the NMDAR antagonist lanicemine in individuals with symptoms of PTSD (Clinician Administered PTSD Scale [CAPS-5] score ≥ 25) and evidence of behavioral sensitization measured as enhanced anxiety-potentiated startle (APS; T-score ≥ 2.8). Methods: Subjects (n = 24; age range 21-65) receive three 60-min intravenous infusions of placebo or 100 mg lanicemine over 5 non-consecutive days. Primary endpoint is change in APS from pre-treatment baseline to after the third infusion. NMDAR engagement is probed with resting state EEG gamma band power, 40 Hz auditory steady state response, the mismatch negativity amplitude, and P50 sensory gating. Change in CAPS-5 scores is an exploratory clinical endpoint. Bayesian statistical methods will evaluate endpoints to determine suitability of this agent for further study. Conclusion: In contrast to traditional early-phase trials that use symptom severity to track treatment efficacy, this study tracks engagement of the study drug on expression of behavioral sensitization, a functional mechanism likely to cut across disorders. This experimental therapeutics design is consistent with recent NIMH-industry collaborative studies, and could serve as a template for testing novel pharmacological agents in psychiatry. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03166501.

SELECTION OF CITATIONS
SEARCH DETAIL
...